Patents by Inventor Christopher P. Zing

Christopher P. Zing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10220726
    Abstract: An electric vehicle accomplishes speed changes through the use of electronically controlled, multiple electric motor configurations that are coupled to an output drive shaft instead of a speed change transmission. A parallel-coupled motor configuration includes at least two motors that are each coupled to the output drive shaft through respective gear arrangements, each gear arrangement having a respective gear ratio. In a serially-coupled motor configuration, the stator of the second motor is coupled to the rotor of the first motor, where the rotor of the second motor is coupled to the output drive shaft. The required torque to reach or maintain a desired vehicle speed can be obtained by selective energization of either one or both of the motors (in both multi-motor configurations). Two motors are also coupled to a differential gear so that the rotational speed contributed by both motors are additive at the output shaft.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: March 5, 2019
    Assignee: Superior Electron, LLC
    Inventors: Christopher P. Zing, Joachim H. Wiest, Henry T. Fung
  • Patent number: 9855859
    Abstract: An electric vehicle accomplishes speed changes through the use of electronically controlled, multiple electric motor configurations that are coupled to an output drive shaft instead of a speed change transmission. A parallel-coupled motor configuration includes at least two motors that are each coupled to the output drive shaft through respective gear arrangements, each gear arrangement having a respective gear ratio. In a serially-coupled motor configuration, the stator of the second motor is coupled to the rotor of the first motor, where the rotor of the second motor is coupled to the output drive shaft. The required torque to reach or maintain a desired vehicle speed can be obtained by selective energization of either one or both of the motors (in both multi-motor configurations). Two motors are also coupled to a differential gear so that the rotational speed contributed by both motors are additive at the output shaft.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: January 2, 2018
    Assignee: Superior Electron, LLC
    Inventors: Christopher P. Zing, Joachim H. Wiest, Henry T. Fung
  • Patent number: 9676295
    Abstract: An electric vehicle accomplishes speed changes through the use of electronically controlled, multiple electric motor configurations that are coupled to an output drive shaft instead of a speed change transmission. A parallel-coupled motor configuration includes at least two motors that are each coupled to the output drive shaft through respective gear arrangements, each gear arrangement having a respective gear ratio. In a serially-coupled motor configuration, the stator of the second motor is coupled to the rotor of the first motor, where the rotor of the second motor is coupled to the output drive shaft. The required torque to reach or maintain a desired vehicle speed can be obtained by selective energization of either one or both of the motors (in both multi-motor configurations). Two motors are also coupled to a differential gear so that the rotational speed contributed by both motors are additive at the output shaft.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: June 13, 2017
    Assignee: SUPERIOR ELECTRON, LLC
    Inventors: Christopher P. Zing, Joachim H. Wiest, Henry T. Fung
  • Publication number: 20160129811
    Abstract: An electric vehicle accomplishes speed changes through the use of electronically controlled, multiple electric motor configurations that are coupled to an output drive shaft instead of a speed change transmission. A parallel-coupled motor configuration includes at least two motors that are each coupled to the output drive shaft through respective gear arrangements, each gear arrangement having a respective gear ratio. In a serially-coupled motor configuration, the stator of the second motor is coupled to the rotor of the first motor, where the rotor of the second motor is coupled to the output drive shaft. The required torque to reach or maintain a desired vehicle speed can be obtained by selective energization of either one or both of the motors (in both multi-motor configurations). Two motors are also coupled to a differential gear so that the rotational speed contributed by both motors are additive at the output shaft.
    Type: Application
    Filed: January 15, 2016
    Publication date: May 12, 2016
    Inventors: Christopher P. Zing, Joachim H. Wiest, Henry T. Fung
  • Publication number: 20140100732
    Abstract: An electric vehicle accomplishes speed changes through the use of electronically controlled, multiple electric motor configurations that are coupled to an output drive shaft instead of a speed change transmission. A parallel-coupled motor configuration includes at least two motors that are each coupled to the output drive shaft through respective gear arrangements, each gear arrangement having a respective gear ratio. In a serially-coupled motor configuration, the stator of the second motor is coupled to the rotor of the first motor, where the rotor of the second motor is coupled to the output drive shaft. The required torque to reach or maintain a desired vehicle speed can be obtained by selective energization of either one or both of the motors (in both multi-motor configurations). Two motors are also coupled to a differential gear so that the rotational speed contributed by both motors are additive at the output shaft.
    Type: Application
    Filed: December 11, 2013
    Publication date: April 10, 2014
    Inventors: Christopher P. Zing, Joachim H. Wiest, Henry T. Fung
  • Patent number: 8618752
    Abstract: An electric vehicle accomplishes speed changes through the use of electronically controlled, multiple electric motor configurations that are coupled to an output drive shaft instead of a speed change transmission. A parallel-coupled motor configuration includes at least two motors that are each coupled to the output drive shaft through respective gear arrangements, each gear arrangement having a respective gear ratio. In a serially-coupled motor configuration, the stator of the second motor is coupled to the rotor of the first motor, where the rotor of the second motor is coupled to the output drive shaft. The required torque to reach or maintain a desired vehicle speed can be obtained by selective energization of either one or both of the motors (in both multi-motor configurations). Two motors are also coupled to a differential gear so that the rotational speed contributed by both motors are additive at the output shaft.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: December 31, 2013
    Assignee: Superior Electron, LLC
    Inventors: Christopher P. Zing, Joachim H. Wiest, Henry T. Fung
  • Publication number: 20120019172
    Abstract: An electric vehicle accomplishes speed changes through the use of electronically controlled, multiple electric motor configurations that are coupled to an output drive shaft instead of a speed change transmission. A parallel-coupled motor configuration includes at least two motors that are each coupled to the output drive shaft through respective gear arrangements, each gear arrangement having a respective gear ratio. In a serially-coupled motor configuration, the stator of the second motor is coupled to the rotor of the first motor, where the rotor of the second motor is coupled to the output drive shaft. The required torque to reach or maintain a desired vehicle speed can be obtained by selective energization of either one or both of the motors (in both multi-motor configurations). Two motors are also coupled to a differential gear so that the rotational speed contributed by both motors are additive at the output shaft.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 26, 2012
    Inventors: Christopher P. Zing, Joachim H. Wiest, Henry T. Fung