Patents by Inventor Christopher Paul Urmson

Christopher Paul Urmson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220050474
    Abstract: Models can be generated of a vehicle's view of its environment and used to maneuver the vehicle. This view need not include what objects or features the vehicle is actually seeing, but rather those areas that the vehicle is able to observe using its sensors if the sensors were completely un-occluded. For example, for each of a plurality of sensors of the object detection component, a computer may generate an individual 3D model of that sensor's field of view. Weather information is received and used to adjust one or more of the models. After this adjusting, the models may be aggregated into a comprehensive 3D model. The comprehensive model may be combined with detailed map information indicating the probability of detecting objects at different locations. The model of the vehicle's environment may be computed based on the combined comprehensive 3D model and detailed map information.
    Type: Application
    Filed: October 28, 2021
    Publication date: February 17, 2022
    Inventors: Dmitri A. Dolgov, Christopher Paul Urmson
  • Patent number: 11205240
    Abstract: The technology relates to facilitating transportation services between a user and a vehicle having an autonomous driving mode. For instance, one or more server computing devices having one or more processors may information identifying the current location of the vehicle. The one or more server computing devices may determine that the user is likely to want to take a trip to a particular destination based on prior location history for the user. The one or more server computing devices may dispatch the vehicle to cause the vehicle to travel in the autonomous driving mode towards a location of the user. In addition, after dispatching, the one or more server computing devices sending a notification to a client computing device associated with the user indicating that the vehicle is currently available to take the passenger to the particular destination.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: December 21, 2021
    Assignee: Waymo LLC
    Inventors: Christopher Paul Urmson, Peter Colijn, Dmitri A. Dolgov, Nathaniel Fairfield, Salil Pandit, Nirmal Patel, Ryan Powell, Min Li Chan
  • Patent number: 11188092
    Abstract: Models can be generated of a vehicle's view of its environment and used to maneuver the vehicle. This view need not include what objects or features the vehicle is actually seeing, but rather those areas that the vehicle is able to observe using its sensors if the sensors were completely un-occluded. For example, for each of a plurality of sensors of the object detection component, a computer may generate an individual 3D model of that sensor's field of view. Weather information is received and used to adjust one or more of the models. After this adjusting, the models may be aggregated into a comprehensive 3D model. The comprehensive model may be combined with detailed map information indicating the probability of detecting objects at different locations. The model of the vehicle's environment may be computed based on the combined comprehensive 3D model and detailed map information.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: November 30, 2021
    Assignee: Waymo LLC
    Inventors: Dmitri A. Dolgov, Christopher Paul Urmson
  • Publication number: 20210276554
    Abstract: Aspects of the disclosure relate to generating a speed plan for an autonomous vehicle. As an example, the vehicle is maneuvered in an autonomous driving mode along a route using pre-stored map information. This information identifies a plurality of keep clear regions where the vehicle should not stop but can drive through in the autonomous driving mode. Each keep clear region of the plurality of keep clear regions is associated with a priority value. A subset of the plurality of keep clear regions is identified based on the route. A speed plan for stopping the vehicle is generated based on the priority values associated with the keep clear regions of the subset. The speed plan identifies a location for stopping the vehicle. The speed plan is used to stop the vehicle in the location.
    Type: Application
    Filed: April 16, 2021
    Publication date: September 9, 2021
    Inventors: Jared Stephen Russell, Dmitri A. Dolgov, Nathaniel Fairfield, Laura Estelle Lindzey, Christopher Paul Urmson
  • Patent number: 11106893
    Abstract: A method and apparatus are provided for optimizing one or more object detection parameters used by an autonomous vehicle to detect objects in images. The autonomous vehicle may capture the images using one or more sensors. The autonomous vehicle may then determine object labels and their corresponding object label parameters for the detected objects. The captured images and the object label parameters may be communicated to an object identification server. The object identification server may request that one or more reviewers identify objects in the captured images. The object identification server may then compare the identification of objects by reviewers with the identification of objects by the autonomous vehicle. Depending on the results of the comparison, the object identification server may recommend or perform the optimization of one or more of the object detection parameters.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: August 31, 2021
    Assignee: Waymo LLC
    Inventors: Jiajun Zhu, Christopher Paul Urmson, Dirk Haehnel, Nathaniel Fairfield, Russell Leigh Smith
  • Patent number: 11034351
    Abstract: Aspects of the disclosure relate to generating a speed plan for an autonomous vehicle. As an example, the vehicle is maneuvered in an autonomous driving mode along a route using pre-stored map information. This information identifies a plurality of keep clear regions where the vehicle should not stop but can drive through in the autonomous driving mode. Each keep clear region of the plurality of keep clear regions is associated with a priority value. A subset of the plurality of keep clear regions is identified based on the route. A speed plan for stopping the vehicle is generated based on the priority values associated with the keep clear regions of the subset. The speed plan identifies a location for stopping the vehicle. The speed plan is used to stop the vehicle in the location.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: June 15, 2021
    Assignee: Waymo LLC
    Inventors: Jared Stephen Russell, Dmitri A. Dolgov, Nathaniel Fairfield, Laura Estelle Lindzey, Christopher Paul Urmson
  • Publication number: 20210146932
    Abstract: Determining yaw parameter(s) (e.g., at least one yaw rate) of an additional vehicle that is in addition to a vehicle being autonomously controlled, and adapting autonomous control of the vehicle based on the determined yaw parameter(s) of the additional vehicle. For example, autonomous steering, acceleration, and/or deceleration of the vehicle can be adapted based on a determined yaw rate of the additional vehicle. In many implementations, the yaw parameter(s) of the additional vehicle are determined based on data from a phase coherent Light Detection and Ranging (LIDAR) component of the vehicle, such as a phase coherent LIDAR monopulse component and/or a frequency-modulated continuous wave (FMCW) LIDAR component.
    Type: Application
    Filed: December 28, 2020
    Publication date: May 20, 2021
    Inventors: Warren Smith, Ethan Eade, Sterling J. Anderson, James Andrew Bagnell, Bartholomeus C. Nabbe, Christopher Paul Urmson
  • Patent number: 11010998
    Abstract: Aspects of the present disclosure relate generally to limiting the use of an autonomous or semi-autonomous vehicle by particular occupants based on permission data. More specifically, permission data may include destinations, routes, and/or other information that is predefined or set by a third party. The vehicle may then access the permission data in order to transport the particular occupant to the predefined destination, for example, without deviation from the predefined route. The vehicle may drop the particular occupant off at the destination and may wait until the passenger is ready to move to another predefined destination. The permission data may be used to limit the ability of the particular occupant to change the route of the vehicle completely or by some maximum deviation value. For example, the vehicle may be able to deviate from the route up to a particular distance from or along the route.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: May 18, 2021
    Assignee: Waymo LLC
    Inventors: Dmitri A Dolgov, Sebastian Thrun, Luis Ricardo Prada Gomez, Christopher Paul Urmson, Nathaniel Fairfield, Anthony Scott Levandowski
  • Patent number: 10906536
    Abstract: Determining yaw parameter(s) (e.g., at least one yaw rate) of an additional vehicle that is in addition to a vehicle being autonomously controlled, and adapting autonomous control of the vehicle based on the determined yaw parameter(s) of the additional vehicle. For example, autonomous steering, acceleration, and/or deceleration of the vehicle can be adapted based on a determined yaw rate of the additional vehicle. In many implementations, the yaw parameter(s) of the additional vehicle are determined based on data from a phase coherent Light Detection and Ranging (LIDAR) component of the vehicle, such as a phase coherent LIDAR monopulse component and/or a frequency-modulated continuous wave (FMCW) LIDAR component.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: February 2, 2021
    Assignee: Aurora Innovation, Inc.
    Inventors: Warren Smith, Ethan Eade, Sterling J. Anderson, James Andrew Bagnell, Bartholomeus C. Nabbe, Christopher Paul Urmson
  • Publication number: 20200391736
    Abstract: Various implementations described herein generate training instances that each include corresponding training instance input that is based on corresponding sensor data of a corresponding autonomous vehicle, and that include corresponding training instance output that is based on corresponding sensor data of a corresponding additional vehicle, where the corresponding additional vehicle is captured at least in part by the corresponding sensor data of the corresponding autonomous vehicle. Various implementations train a machine learning model based on such training instances. Once trained, the machine learning model can enable processing, using the machine learning model, of sensor data from a given autonomous vehicle to predict one or more properties of a given additional vehicle that is captured at least in part by the sensor data.
    Type: Application
    Filed: May 7, 2020
    Publication date: December 17, 2020
    Inventors: Warren Smith, Ethan Eade, Sterling J. Anderson, James Andrew Bagnell, Bartholomeus C. Nabbe, Christopher Paul Urmson
  • Patent number: 10846635
    Abstract: The present invention relates generally to dispatching transportation to a business location. More specifically, an autonomous vehicle may be dispatched to pick up a passenger and transport that passenger to the business location.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: November 24, 2020
    Assignee: Waymo LLC
    Inventors: Luis Ricardo Prada Gomez, Andrew Timothy Szybalski, Sebastian Thrun, Philip Nemec, Christopher Paul Urmson
  • Patent number: 10845202
    Abstract: An autonomous vehicle may access portions of a map to maneuver a roadway. The map may be split into one or more levels that represent different regions in space. For example, an overpass may be represented by one level while the road below the overpass may be on a separate level. A vehicle traveling on a particular level may use map data that is associated with that level. Furthermore, if the vehicle travels through a warp zone, it may transition from the current level to a destination level and thus begin to use map data associated with the destination level.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: November 24, 2020
    Assignee: Waymo LLC
    Inventors: Christopher Paul Urmson, Michael Steven Montemerlo, Andrew Hughes Chatham, Daniel Trawick Egnor
  • Patent number: 10843708
    Abstract: Autonomous vehicles use various computing systems to transport passengers from one location to another. A control computer sends messages to the various systems of the vehicle in order to maneuver the vehicle safely to the destination. The control computer may display information on an electronic display in order to allow the passenger to understand what actions the vehicle may be taking in the immediate future. Various icons and images may be used to provide this information to the passenger.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: November 24, 2020
    Assignee: Waymo LLC
    Inventors: Andrew Timothy Szybalski, Luis Ricardo Prada Gomez, Philip Nemec, Christopher Paul Urmson, Sebastian Thrun
  • Patent number: 10768619
    Abstract: A passenger in an automated vehicle may relinquish control of the vehicle to a control computer when the control computer has determined that it may maneuver the vehicle safely to a destination. The passenger may relinquish or regain control of the vehicle by applying different degrees of pressure, for example, on a steering wheel of the vehicle. The control computer may convey status information to a passenger in a variety of ways including by illuminating elements of the vehicle. The color and location of the illumination may indicate the status of the control computer, for example, whether the control computer has been armed, is ready to take control of the vehicle, or is currently controlling the vehicle.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: September 8, 2020
    Assignee: Waymo LLC
    Inventors: Andrew Timothy Szybalski, Luis Ricardo Prada Gomez, Christopher Paul Urmson, Sebastian Thrun, Philip Nemec
  • Patent number: 10676085
    Abstract: Various implementations described herein generate training instances that each include corresponding training instance input that is based on corresponding sensor data of a corresponding autonomous vehicle, and that include corresponding training instance output that is based on corresponding sensor data of a corresponding additional vehicle, where the corresponding additional vehicle is captured at least in part by the corresponding sensor data of the corresponding autonomous vehicle. Various implementations train a machine learning model based on such training instances. Once trained, the machine learning model can enable processing, using the machine learning model, of sensor data from a given autonomous vehicle to predict one or more properties of a given additional vehicle that is captured at least in part by the sensor data.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: June 9, 2020
    Assignee: Aurora Innovation, Inc.
    Inventors: Warren Smith, Ethan Eade, Sterling J. Anderson, James Andrew Bagnell, Bartholomeus C. Nabbe, Christopher Paul Urmson
  • Patent number: 10663976
    Abstract: Models can be generated of a vehicle's view of its environment and used to maneuver the vehicle. This view need not include what objects or features the vehicle is actually seeing, but rather those areas that the vehicle is able to observe using its sensors if the sensors were completely un-occluded. For example, for each of a plurality of sensors of the object detection component, a computer may generate an individual 3D model of that sensor's field of view. Weather information is received and used to adjust one or more of the models. After this adjusting, the models may be aggregated into a comprehensive 3D model. The comprehensive model may be combined with detailed map information indicating the probability of detecting objects at different locations. The model of the vehicle's environment may be computed based on the combined comprehensive 3D model and detailed map information.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: May 26, 2020
    Assignee: Waymo LLC
    Inventors: Dmitri A. Dolgov, Christopher Paul Urmson
  • Patent number: 10663975
    Abstract: Models can be generated of a vehicle's view of its environment and used to maneuver the vehicle. This view need not include what objects or features the vehicle is actually seeing, but rather those areas that the vehicle is able to observe using its sensors if the sensors were completely un-occluded. For example, for each of a plurality of sensors of the object detection component, a computer may generate an individual 3D model of that sensor's field of view. Weather information is received and used to adjust one or more of the models. After this adjusting, the models may be aggregated into a comprehensive 3D model. The comprehensive model may be combined with detailed map information indicating the probability of detecting objects at different locations. The model of the vehicle's environment may be computed based on the combined comprehensive 3D model and detailed map information.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: May 26, 2020
    Assignee: Waymo LLC
    Inventors: Dmitri A. Dolgov, Christopher Paul Urmson
  • Publication number: 20200159248
    Abstract: Models can be generated of a vehicle's view of its environment and used to maneuver the vehicle. This view need not include what objects or features the vehicle is actually seeing, but rather those areas that the vehicle is able to observe using its sensors if the sensors were completely un-occluded. For example, for each of a plurality of sensors of the object detection component, a computer may generate an individual 3D model of that sensor's field of view. Weather information is received and used to adjust one or more of the models. After this adjusting, the models may be aggregated into a comprehensive 3D model. The comprehensive model may be combined with detailed map information indicating the probability of detecting objects at different locations. The model of the vehicle's environment may be computed based on the combined comprehensive 3D model and detailed map information.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Inventors: Dmitri A. Dolgov, Christopher Paul Urmson
  • Patent number: 10591919
    Abstract: Aspects of the disclosure relate generally to detecting and avoiding blind spots of other vehicles when maneuvering an autonomous vehicle. Blind spots may include both areas adjacent to another vehicle in which the driver of that vehicle would be unable to identify another object as well as areas that a second driver in a second vehicle may be uncomfortable driving. In one example, a computer of the autonomous vehicle may identify objects that may be relevant for blind spot detecting and may determine the blind spots for these other vehicles. The computer may predict the future locations of the autonomous vehicle and the identified vehicles to determine whether the autonomous vehicle would drive in any of the determined blind spots. If so, the autonomous driving system may adjust its speed to avoid or limit the autonomous vehicle's time in any of the blind spots.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: March 17, 2020
    Assignee: Waymo LLC
    Inventors: Dmitri A. Dolgov, Christopher Paul Urmson
  • Patent number: 10572717
    Abstract: A method and apparatus are provided for optimizing one or more object detection parameters used by an autonomous vehicle to detect objects in images. The autonomous vehicle may capture the images using one or more sensors. The autonomous vehicle may then determine object labels and their corresponding object label parameters for the detected objects. The captured images and the object label parameters may be communicated to an object identification server. The object identification server may request that one or more reviewers identify objects in the captured images. The object identification server may then compare the identification of objects by reviewers with the identification of objects by the autonomous vehicle. Depending on the results of the comparison, the object identification server may recommend or perform the optimization of one or more of the object detection parameters.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: February 25, 2020
    Assignee: WAYMO LLC
    Inventors: Jiajun Zhu, Christopher Paul Urmson, Dirk Haehnel, Nathaniel Fairfield, Russell Leigh Smith