Patents by Inventor Christopher Paxton

Christopher Paxton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11360477
    Abstract: Techniques for determining a trajectory for an autonomous vehicle are described herein. In general, determining a route can include utilizing a search algorithm such as Monte Carlo Tree Search (MCTS) to search for possible trajectories, while using temporal logic formulas, such as Linear Temporal Logic (LTL), to validate or reject the possible trajectories. Trajectories can be selected based on various costs and constraints optimized for performance. Determining a trajectory can include determining a current state of the autonomous vehicle, which can include determining static and dynamic symbols in an environment. A context of an environment can be populated with the symbols, features, predicates, and LTL formula. Rabin automata can be based on the LTL formula, and the automata can be used to evaluate various candidate trajectories. Nodes of the MCTS can be generated and actions can be explored based on machine learning implemented as, for example, a deep neural network.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: June 14, 2022
    Assignee: Zoox, Inc.
    Inventors: Marin Kobilarov, Timothy Caldwell, Vasumathi Raman, Christopher Paxton, Joona Markus Petteri Kiiski, Jacob Lee Askeland, Robert Edward Somers
  • Publication number: 20200387158
    Abstract: Techniques for determining a trajectory for an autonomous vehicle are described herein. In general, determining a route can include utilizing a search algorithm such as Monte Carlo Tree Search (MCTS) to search for possible trajectories, while using temporal logic formulas, such as Linear Temporal Logic (LTL), to validate or reject the possible trajectories. Trajectories can be selected based on various costs and constraints optimized for performance. Determining a trajectory can include determining a current state of the autonomous vehicle, which can include determining static and dynamic symbols in an environment. A context of an environment can be populated with the symbols, features, predicates, and LTL formula. Rabin automata can be based on the LTL formula, and the automata can be used to evaluate various candidate trajectories. Nodes of the MCTS can be generated and actions can be explored based on machine learning implemented as, for example, a deep neural network.
    Type: Application
    Filed: June 22, 2020
    Publication date: December 10, 2020
    Inventors: Marin Kobilarov, Timothy Caldwell, Vasumathi Raman, Christopher Paxton, Joona Markus Petteri Kiiski, Jacob Lee Askeland, Robert Edward Somers
  • Patent number: 10691127
    Abstract: Techniques for determining a trajectory for an autonomous vehicle are described herein. In general, determining a route can include utilizing a search algorithm such as Monte Carlo Tree Search (MCTS) to search for possible trajectories, while using temporal logic formulas, such as Linear Temporal Logic (LTL), to validate or reject the possible trajectories. Trajectories can be selected based on various costs and constraints optimized for performance. Determining a trajectory can include determining a current state of the autonomous vehicle, which can include determining static and dynamic symbols in an environment. A context of an environment can be populated with the symbols, features, predicates, and LTL formula. Rabin automata can be based on the LTL formula, and the automata can be used to evaluate various candidate trajectories. Nodes of the MCTS can be generated and actions can be explored based on machine learning implemented as, for example, a deep neural network.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 23, 2020
    Assignee: Zoox, Inc.
    Inventors: Marin Kobilarov, Timothy Caldwell, Vasumathi Raman, Christopher Paxton, Joona Markus Petteri Kiiski, Jacob Lee Askeland, Robert Edward Somers
  • Patent number: 10671076
    Abstract: Techniques for generating trajectories for autonomous vehicles and for predicting trajectories for third-party objects using temporal logic and tree search are described herein. Perception data about an environment can be captured to determine static objects and dynamic objects. For a particular dynamic object, which can represent a third-party vehicle, predictive trajectories can be generated to represent possible trajectories based on available options and rules of the road. Operations can include determining probabilities that a third-party vehicle will execute a predictive trajectory and updating the probabilities over time as motion data is captured. Predictive trajectories can be provided to the autonomous vehicle and commands for the autonomous vehicle can be based on the predictive trajectories.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: June 2, 2020
    Assignee: Zoox, Inc.
    Inventors: Marin Kobilarov, Timothy Caldwell, Vasumathi Raman, Christopher Paxton
  • Publication number: 20190101919
    Abstract: Techniques for determining a trajectory for an autonomous vehicle are described herein. In general, determining a route can include utilizing a search algorithm such as Monte Carlo Tree Search (MCTS) to search for possible trajectories, while using temporal logic formulas, such as Linear Temporal Logic (LTL), to validate or reject the possible trajectories. Trajectories can be selected based on various costs and constraints optimized for performance. Determining a trajectory can include determining a current state of the autonomous vehicle, which can include determining static and dynamic symbols in an environment. A context of an environment can be populated with the symbols, features, predicates, and LTL formula. Rabin automata can be based on the LTL formula, and the automata can be used to evaluate various candidate trajectories. Nodes of the MCTS can be generated and actions can be explored based on machine learning implemented as, for example, a deep neural network.
    Type: Application
    Filed: November 16, 2018
    Publication date: April 4, 2019
    Inventors: Marin Kobilarov, Timothy Caldwell, Vasumathi Raman, Christopher Paxton, Joona Markus Petteri Kiiski, Jacob Lee Askeland, Robert Edward Somers
  • Patent number: 10133275
    Abstract: Techniques for determining a trajectory for an autonomous vehicle are described herein. In general, determining a route can include utilizing a search algorithm such as Monte Carlo Tree Search (MCTS) to search for possible trajectories, while using temporal logic formulas, such as Linear Temporal Logic (LTL), to validate or reject the possible trajectories. Trajectories can be selected based on various costs and constraints optimized for performance. Determining a trajectory can include determining a current state of the autonomous vehicle, which can include determining static and dynamic symbols in an environment. A context of an environment can be populated with the symbols, features, predicates, and LTL formula. Rabin automata can be based on the LTL formula, and the automata can be used to evaluate various candidate trajectories. Nodes of the MCTS can be generated and actions can be explored based on machine learning implemented as, for example, a deep neural network.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: November 20, 2018
    Assignee: Zoox, Inc.
    Inventors: Marin Kobilarov, Timothy Caldwell, Vasumathi Raman, Christopher Paxton, Joona Markus Petteri Kiiski, Jacob Lee Askeland, Robert Edward Somers