Patents by Inventor Christopher Philip Leach

Christopher Philip Leach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10816499
    Abstract: An electrochemical test device for determining the concentration of an analyte in a fluid sample, wherein the electrochemical test device has a substrate is provided. The device comprises a micro-voided synthetic polymer.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: October 27, 2020
    Assignee: INSIDE BIOMETRICS INTERNATIONAL LIMITED
    Inventors: Christopher Philip Leach, James Iain Rodgers
  • Publication number: 20180372668
    Abstract: An electrochemical test device for determining the concentration of an analyte in a fluid sample, wherein the electrochemical test device has a substrate is provided. The device comprises a micro-voided synthetic polymer.
    Type: Application
    Filed: November 23, 2016
    Publication date: December 27, 2018
    Inventors: Christopher Philip LEACH, James Iain RODGERS
  • Publication number: 20180299398
    Abstract: A test device for measuring the amount of analyte in a fluid sample, including a substrate having thereon: a first analyte reagent formulated to react with the analyte to generate a signal indicative of the presence or amount of analyte in the sample, the first analyte reagent having a first time-based response characteristic; and a second analyte reagent formulated to react with the analyte to generate a signal indicative of the presence or amount of analyte in the sample, the second analyte reagent having a second time-based response characteristic.
    Type: Application
    Filed: November 5, 2015
    Publication date: October 18, 2018
    Applicant: Inside Biometrics Limited
    Inventors: James Iain Rodgers, Christopher Philip Leach, Marco Fabio Cardosi
  • Patent number: 9335291
    Abstract: Described and illustrated herein are one exemplary method and a measurement system having a meter and a test strip. The test strip has a first working electrode, reference electrode and second working electrode. In this method, acceptable fill data from known first current and known second current are used to predict an estimated second current at proximate the second time period (for a given batch of test strips) during the test sequence. The estimated second current at proximate the second time interval is then compared with a measured actual second current at proximate the second time interval during an actual test to determine if the measured actual second current is substantially equal to or within an acceptable percent deviation from the estimated second current so as to determine sufficient volume of a physiological fluid sample in the test strip.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: May 10, 2016
    Assignee: LifeScan Scotland Limited
    Inventors: James Iain Rodgers, Leanne Mills, Marco F. Cardosi, Christopher Philip Leach, James Moffat
  • Patent number: 9046480
    Abstract: The method includes: providing a test strip comprising a reference electrode and a working electrode coated with a reagent layer; applying a fluid sample to the test strip for a reaction period; applying a test voltage between the reference electrode and the working electrode; measuring a test current as a function of time; measuring a steady state current value when the test current has reached an equilibrium; calculating a ratio of the test current to the steady state current value; plotting the ratio of the test current to the steady state current value as a function of the inverse square root of time; calculating an effective diffusion coefficient from the slope of the linearly regressed plot of the ratio of the test current to the steady state current value as a function of the inverse square root of time; and calculating a hematocrit-corrected concentration of analyte.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: June 2, 2015
    Assignee: LifeScan Scotland Limited
    Inventors: Stephen Patrick Blythe, Marco F. Cardosi, Andrew Gill, Leanne Mills, Christopher Philip Leach
  • Publication number: 20150068920
    Abstract: Described and illustrated herein are one exemplary method and a measurement system having a meter and a test strip. The test strip has a first working electrode, reference electrode and second working electrode. In this method, acceptable fill data from known first current and known second current are used to predict an estimated second current at proximate the second time period (for a given batch of test strips) during the test sequence. The estimated second current at proximate the second time interval is then compared with a measured actual second current at proximate the second time interval during an actual test to determine if the measured actual second current is substantially equal to or within an acceptable percent deviation from the estimated second current so as to determine sufficient volume of a physiological fluid sample in the test strip.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Inventors: James Iain RODGERS, Leanne MILLS, Marco F. CARDOSI, Christopher Philip LEACH, James MOFFAT
  • Patent number: 8815076
    Abstract: A method and system is provided to allow for determination of substantially Hematocrit independent analyte concentration. In one example, an analyte measurement system is provided that includes a test strip and a test meter. The test strip includes a reference electrode and a working electrode, in which the working electrode is coated with a reagent layer. The test meter includes an electronic circuit and a signal processor. The electronic circuit applies a plurality of voltages to the reference electrode and the working electrode over respective durations. The signal processor is configured to determine a substantially hematocrit-independent concentration of the analyte from a plurality of current values as measured by the processor upon application of a plurality of test voltages to the reference and working electrodes over a plurality of durations interspersed with rest voltages lower than the test voltages being applied to the electrodes.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: August 26, 2014
    Assignee: Lifescan Scotland Limited
    Inventors: Marco F. Cardosi, Stephen Patrick Blythe, Matthew Finch, Arlene Thompson, Nina Antonia Naylor, Eric Jason Bailey, Michael Patick Dolan, Gretchen Anderson, Lorraine Comstock, Mary McEvoy, Thomas Sutton, Richard Michael Day, Leanne Mills, Emma Vanessa Jayne Day, Christopher Philip Leach
  • Patent number: 8632664
    Abstract: A test meter for use with a dual-chamber, multi-analyte test strip includes a test strip receiving module and a signal processing module. The test strip receiving module has a first electrical connector configured for contacting a first analyte contact pad of a first working electrode of the test strip; a second electrical connector configured for contacting a second analyte contact pad of a second working electrode of the test strip, a third electrical connector configured for contacting a first counter/reference contact pad of a first counter/reference electrode layer of the test strip, and a fourth electrical connector configured for contacting a second counter/reference contact pad of a second counter/reference electrode layer of the test strip.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: January 21, 2014
    Assignee: LifeScan Scotland Limited
    Inventors: Gavin Macfie, Graeme Webster, Marco F. Cardosi, Christopher Philip Leach, Steven Setford, Selwayan Saini
  • Publication number: 20130240375
    Abstract: The method includes: providing a test strip comprising a reference electrode and a working electrode coated with a reagent layer; applying a fluid sample to the test strip for a reaction period; applying a test voltage between the reference electrode and the working electrode; measuring a test current as a function of time; measuring a steady state current value when the test current has reached an equilibrium; calculating a ratio of the test current to the steady state current value; plotting the ratio of the test current to the steady state current value as a function of the inverse square root of time; calculating an effective diffusion coefficient from the slope of the linearly regressed plot of the ratio of the test current to the steady state current value as a function of the inverse square root of time; and calculating a hematocrit-corrected concentration of analyte.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 19, 2013
    Applicant: LifeScan Scotland Limited
    Inventors: Stephen Patrick BLYTHE, Marco F. CARDOSI, Andrew GILL, Leanne MILLS, Christopher Philip LEACH
  • Patent number: 8486244
    Abstract: Described herein is an electrochemical enzymatic analyte test strip and method for making the test strip. The test strip utilizes isolated conductive areas inside the electrodes to define electrode whiskers. The method utilizes laser ablation to define electrode patterns.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: July 16, 2013
    Assignee: LifeScan Scotland Limited
    Inventors: Marco F. Cardosi, Leanne Mills, Emma Vanessa Jayne Day, Richard Michael Day, Christopher Philip Leach
  • Patent number: 8460537
    Abstract: A method for determining an analyte concentration in blood is described that reduces the effects of hematocrit using a test strip attached to a test meter. The test strip includes a working electrode and a reference electrode. The test meter applies a test voltage between the working electrode and the reference electrode. After a user applies a blood sample containing an analyte onto the test strip, the test meter measures a plurality of test currents for a test time interval.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: June 11, 2013
    Assignee: LifeScan Scotland Limited
    Inventors: Stephen Patrick Blythe, Marco F Cardosi, Leanne Mills, Manuel Alvarez-Icaza, Emma Vanessa Jayne Day, Richard Michael Day, Christopher Philip Leach
  • Patent number: 8388821
    Abstract: Description is provided herein for an embodiment of a method determining a hematocrit-corrected glucose concentration. The exemplary method includes providing a test strip having a reference electrode and a working electrode, wherein the working electrode includes a plurality of microelectrodes and is coated with at least an enzyme and a mediator.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: March 5, 2013
    Assignee: LifeScan Scotland Limited
    Inventors: Stephen Patrick Blythe, Marco F. Cardosi, Andrew Gill, Leanne Mills, Christopher Philip Leach
  • Patent number: 8323467
    Abstract: A dual chamber, multi-analyte test strip has a first insulating layer, a first electrically conductive layer, with a first working electrode, disposed on the first insulating layer and a first patterned spacer layer positioned above the first electrically conductive layer. The first patterned spacer layer has a first sample-receiving chamber, with first and second end openings, defined therein that overlies the first working electrode. The test strip also includes a first counter/reference electrode layer that is exposed to the first sample receiving chamber and is in an opposing relationship to the first working electrode. The test strip further includes a counter/reference insulating layer disposed over the first counter/reference electrode layer and a second counter/reference electrode layer disposed on the counter/reference substrate. Also included in the test strip is a second patterned spacer layer that is positioned above the second counter/reference electrode layer.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: December 4, 2012
    Assignee: LifeScan Scotland Limited
    Inventors: Gavin MacFie, Graeme Webster, Marco F. Cardosi, Christopher Philip Leach, Steven Setford, Selwayan Saini
  • Patent number: 8293096
    Abstract: A method and system is provided to allow for determination of substantially Hematocrit independent analyte concentration. In one example, an analyte measurement system is provided that includes a test strip and a test meter. The test strip includes a reference electrode and a working electrode, in which the working electrode is coated with a reagent layer. The test meter includes an electronic circuit and a signal processor. The electronic circuit applies a plurality of voltages to the reference electrode and the working electrode over respective durations. The signal processor is configured to determine a substantially hematocrit-independent concentration of the analyte from a plurality of current values as measured by the processor upon application of a plurality of test voltages to the reference and working electrodes over a plurality of durations interspersed with rest voltages lower than the test voltages being applied to the electrodes.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: October 23, 2012
    Assignee: LifeScan Scotland Limited
    Inventors: Marco F. Cardosi, Stephen Patrick Blythe, Matthew Finch, Arlene Thompson, Nina Antonia Naylor, Eric Jason Bailey, Michael Patrick Dolan, Gretchen Anderson, Lorraine Comstock, Mary McEvoy, Thomas Sutton, Richard Michael Day, Leanne Mills, Emma Vanessa Jayne Day, Christopher Philip Leach
  • Publication number: 20120199497
    Abstract: An electrochemical-based analytical test strip for the determination of an analyte (such as glucose) in a bodily fluid sample (e.g., a whole blood sample) includes a substrate, at least one working electrode disposed on the substrate, a sample-soluble enzymatic reagent layer disposed above the working electrode, a diffusion-controlling layer (DCL) disposed between the at least one working electrode and the sample-soluble enzymatic reagent layer; and a sample-receiving chamber. In addition, the sample-soluble enzymatic reagent layer is configured and constituted for operable solubility in a bodily fluid sample applied to the electrochemical-based analytical test strip and received in the sample-receiving chamber and for electrochemical enzymatic reaction with an analyte in the bodily fluid sample.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 9, 2012
    Applicant: LifeScan Scotland Limited
    Inventors: Zuifang Liu, Marco F. Cardosi, Christopher Philip Leach, Scott Sloss
  • Publication number: 20110162978
    Abstract: A method and system is provided to allow for determination of substantially Hematocrit independent analyte concentration. In one example, an analyte measurement system is provided that includes a test strip and a test meter. The test strip includes a reference electrode and a working electrode, in which the working electrode is coated with a reagent layer. The test meter includes an electronic circuit and a signal processor. The electronic circuit applies a plurality of voltages to the reference electrode and the working electrode over respective durations. The signal processor is configured to determine a substantially hematocrit-independent concentration of the analyte from a plurality of current values as measured by the processor upon application of a plurality of test voltages to the reference and working electrodes over a plurality of durations interspersed with rest voltages lower than the test voltages being applied to the electrodes.
    Type: Application
    Filed: January 22, 2010
    Publication date: July 7, 2011
    Applicant: LifeScan Scotland Ltd.
    Inventors: Marco F. CARDOSI, Stephen Patrick Blythe, Matthew Finch, Arlene Thompson, Nina Antonia Naylor, Eric Jason Bailey, Michael Patrick Dolan, Gretchen Anderson, Lorraine Comstock, Mary Mcevoy, Thomas Sutton, Richard Michael Day, Leanne Mills, Emma Vanessa Jayne Day, Christopher Philip Leach
  • Publication number: 20110094882
    Abstract: A test meter for use with a dual-chamber, multi-analyte test strip includes a test strip receiving module and a signal processing module. The test strip receiving module has a first electrical connector configured for contacting a first analyte contact pad of a first working electrode of the test strip; a second electrical connector configured for contacting a second analyte contact pad of a second working electrode of the test strip, a third electrical connector configured for contacting a first counter/reference contact pad of a first counter/reference electrode layer of the test strip, and a fourth electrical connector configured for contacting a second counter/reference contact pad of a second counter/reference electrode layer of the test strip.
    Type: Application
    Filed: October 27, 2009
    Publication date: April 28, 2011
    Applicant: LifeScan Scotland Limited
    Inventors: Gavin MACFIE, Graeme WEBSTER, Marco F. CARDOSI, Christopher Philip LEACH, Steven SETFORD, Selwayan SAINI
  • Publication number: 20110094896
    Abstract: A dual chamber, multi-analyte test strip has a first insulating layer, a first electrically conductive layer, with a first working electrode, disposed on the first insulating layer and a first patterned spacer layer positioned above the first electrically conductive layer. The first patterned spacer layer has a first sample-receiving chamber, with first and second end openings, defined therein that overlies the first working electrode. The test strip also includes a first counter/reference electrode layer that is exposed to the first sample receiving chamber and is in an opposing relationship to the first working electrode. The test strip further includes a counter/reference insulating layer disposed over the first counter/reference electrode layer and a second counter/reference electrode layer disposed on the counter/reference substrate. Also included in the test strip is a second patterned spacer layer that is positioned above the second counter/reference electrode layer.
    Type: Application
    Filed: October 27, 2009
    Publication date: April 28, 2011
    Applicant: LifeScan Scotland Limited
    Inventors: Gavin MACFIE, Graeme Webster, Marco F. Cardosi, Christopher Philip Leach, Steven Setford, Selwayan Saini
  • Publication number: 20110048972
    Abstract: A multi-analyte test strip includes a first insulating layer and an electrically conductive layer disposed on the first insulating layer. The electrically conductive layer has a first working electrode with a first analyte contact pad, a shared counter/reference electrode with a counter/reference electrode contact pad, and a second working electrode with a second analyte contact pad. The multi-analyte test strip also includes a second insulating layer disposed above the first insulating layer and a patterned spacer layer positioned between the first insulating layer and the first electrically conductive layer with the patterned spacer layer defining a bodily fluid sample-receiving chamber that overlies the first working electrode, the shared counter/reference electrode and the second working electrode.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Applicant: LifeScan Scotland Limited
    Inventors: James MOFFAT, Kathryn Macleod, Christopher Philip Leach, Gavin Macfie, Geoffrey Lillie, Marco F. Cardosi
  • Publication number: 20110005941
    Abstract: A method for determining an analyte concentration in blood is described that reduces the effects of hematocrit using a test strip attached to a test meter. The test strip includes a working electrode and a reference electrode. The test meter applies a test voltage between the working electrode and the reference electrode. After a user applies a blood sample containing an analyte onto the test strip, the test meter measures a plurality of test currents for a test time interval.
    Type: Application
    Filed: September 3, 2009
    Publication date: January 13, 2011
    Applicant: LifeScan Scotland Ltd.
    Inventors: Stephen Patrick BLYTHE, Marco F. Cardosi, Leanne Mills, Manuel Alvarez-Icaza, Emma Vanessa Jayne Day, Richard Michael Day, Christopher Philip Leach