Patents by Inventor Christopher POULTON

Christopher POULTON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11960006
    Abstract: Aspects of the present disclosure describe wavelength division multiplexed LiDAR systems, methods, and structures that advantageously provide a wide field of view without employing lasers having a large tuning range.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: April 16, 2024
    Assignee: Analog Photonics LLC
    Inventors: Ehsan Hosseini, Michael Watts, Christopher Poulton, Diedrik Vermeulen
  • Patent number: 11960192
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: April 16, 2024
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 11809058
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: November 7, 2023
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 11768418
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: September 26, 2023
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 11619718
    Abstract: Aspects of the present disclosure describe systems, methods, and structures—including LiDAR—that employ multiple detectors that may determine multiple incident angles of multiple received radiation beams and advantageously do not require or employ phase shifters in illustrative embodiments and may instead—employ optical Fourier transform structures.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: April 4, 2023
    Assignee: Analog Photonics LLC
    Inventors: Ehsan Hosseini, Michael Watts, Christopher Poulton, Matthew Byrd, Diedrik Vermeulen, Peter Russo
  • Publication number: 20230058824
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Application
    Filed: October 31, 2022
    Publication date: February 23, 2023
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 11526063
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: December 13, 2022
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Publication number: 20220113389
    Abstract: Aspects of the present disclosure describe systems, methods, and structures—including LiDAR—that employ multiple detectors that may determine multiple incident angles of multiple received radiation beams and advantageously do not require or employ phase shifters in illustrative embodiments and may instead—employ optical Fourier transform structures.
    Type: Application
    Filed: December 21, 2021
    Publication date: April 14, 2022
    Applicant: Analog Photonics LLC
    Inventors: Ehsan Hosseini, Michael Watts, Christopher Poulton, Matthew Byrd, Diedrik Vermeulen, Peter Russo
  • Patent number: 11243296
    Abstract: Aspects of the present disclosure describe systems, methods, and structures—including LiDAR—that employ multiple detectors that may determine multiple incident angles of multiple received radiation beams and advantageously do not require or employ phase shifters in illustrative embodiments and may instead—employ optical Fourier transform structures.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: February 8, 2022
    Assignee: Analog Photonics LLC
    Inventors: Matthew Byrd, Ehsan Hosseini, Christopher Poulton, Peter Russo, Diedrik Vermeulen, Michael Watts
  • Publication number: 20210356835
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Application
    Filed: July 29, 2021
    Publication date: November 18, 2021
    Applicant: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Publication number: 20210333682
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Application
    Filed: July 8, 2021
    Publication date: October 28, 2021
    Applicant: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Publication number: 20210318442
    Abstract: Aspects of the present disclosure describe wavelength division multiplexed LiDAR systems, methods, and structures that advantageously provide a wide field of view without employing lasers having a large tuning range.
    Type: Application
    Filed: June 24, 2021
    Publication date: October 14, 2021
    Applicant: Analog Photonics LLC
    Inventors: Ehsan Hosseini, Michael Watts, Christopher Poulton, Diedrik Vermeulen
  • Patent number: 11079653
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: August 3, 2021
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 11079654
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: August 3, 2021
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 11061140
    Abstract: Aspects of the present disclosure describe wavelength division multiplexed LiDAR systems, methods, and structures that advantageously provide a wide field of view without employing lasers having a large tuning range.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: July 13, 2021
    Assignee: Analog Photonics LLC
    Inventors: Ehsan Hosseini, Michael Watts, Christopher Poulton, Diedrik Vermeulen
  • Patent number: 10976542
    Abstract: Aspects of the present disclosure describe systems, methods, and structures for aberration correction of optical phased arrays that employ a corrective optical path difference (OPD) in the near-field of an OPA to correct or cancel out aberrations in emitted beams of the OPA including those reaching far-field distances by generating a spatially-varying OPD across the aperture of the OPA that is substantially equal and opposite to an equivalent OPD of the aberration(s).
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: April 13, 2021
    Assignee: Analog Photonics LLC
    Inventors: Peter Nicholas Russo, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan, Diedrik Vermeulen, Michael Robert Watts, Michael Whitson
  • Publication number: 20210026216
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 28, 2021
    Applicant: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 10884312
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: January 5, 2021
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 10790585
    Abstract: Aspects of the present disclosure describe systems, methods, and structures for optical phased array calibration that advantageously may be performed as a single-pass measurement of phase offset with respect to only a single interference measurement. In sharp contrast to the prior art—systems, methods, and structures according to aspects of the present disclosure advantageously produce phase offsets and phase functions of each element without time-consuming iterative procedures or multiple detector signals as required by the prior art.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: September 29, 2020
    Assignee: Analog Photonics LLC
    Inventors: Christopher Poulton, Peter Russo, Erman Timurdogan, Matthew Byrd, Diedrik Vermeulen, Ehsan Hosseini
  • Patent number: 10775559
    Abstract: A plurality of waveguide structures are formed in at least one silicon layer of a first member. The first member includes: a first surface of a first silicon dioxide layer that is attached to a second member that consists essentially of an optically transmissive material having a thermal conductivity less than about 50 W/(m·K), and a second surface of material that was deposited over at least some of the plurality of waveguide structures. An array of phase shifters is formed in one or more layers of the first member. An array of temperature controlling elements are in proximity to the array of phase shifters.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: September 15, 2020
    Assignee: Analog Photonics LLC
    Inventors: Michael Robert Watts, Benjamin Roy Moss, Ehsan Shah Hosseini, Christopher Poulton, Peter Nicholas Russo