Patents by Inventor Christopher R. Pasma

Christopher R. Pasma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200176728
    Abstract: The disclosed technology relates to electrical feedthroughs for thin battery cells. A battery cell enclosure includes a terraced portion having a reduced thickness relative to another portion of the enclosure. The enclosure includes an opening disposed on a horizontal surface of the terraced portion for receiving the electrical feedthrough. Because the feedthrough is disposed on the horizontal surface of the terraced portion, the feedthrough may be over-sized thereby reducing the resistance and impedance of the feedthrough without increasing the height or thickness of the enclosure.
    Type: Application
    Filed: March 15, 2019
    Publication date: June 4, 2020
    Inventors: Brian K. Shiu, Christopher R. Pasma, Andrew Meyers, Haran Balaram
  • Patent number: 10629943
    Abstract: Aspects of the present disclosure involve various battery can designs. In general, the battery can design includes two fitted surfaces oriented opposite each other and seam welded together to form an enclosure in which a battery stack is located. To form the enclosure, the two fitted surfaces are welded together along the large perimeter. Other swelling-resisting advantages may also be achieved utilizing the battery can design described herein including, but not limited to, the ability to modify one or more can wall thicknesses to control a pressure applied to the battery stack by the can, overall reduction in wall thickness of the can through the use of stronger materials for the can surfaces, additional supports structures included within the can design, and/or bossing or other localized thinning of surfaces of the can.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: April 21, 2020
    Inventors: Christopher R. Pasma, Siddharth Mohapatra, George V. Anastas, Bookeun Oh, YooEup Hyung, Brian K. Shiu, Haran Balaram, Junhua Liu
  • Publication number: 20200083498
    Abstract: The disclosed technology relates to an electrical feedthrough for a cylindrical battery cell. The electrical feedthrough may include an annular channel having an outer sidewall, an inner sidewall, and a base; an insulator formed of glass having an overmold portion; and a pin extending through the insulator and configured to form an external battery terminal. The insulator is bonded to the inner sidewall of the annular channel and a portion of the base of the annular channel. The overmold portion prevents electrical contact between a set of electrodes and the electrode feedthrough.
    Type: Application
    Filed: December 6, 2018
    Publication date: March 12, 2020
    Inventors: Brian K. Shiu, Christopher R. Pasma, Gerald K. Cheung, Haran Balaram, Junhua Liu
  • Publication number: 20200044289
    Abstract: Energy storage devices, battery cells, and batteries of the present technology may include a housing characterized by a first end and a second end opposite the first end. The housing may include a circumferential indentation proximate the first end. The housing may define a first interior region between the first end and the circumferential indentation, and the housing may define a second interior region between the circumferential indentation and the second end. The batteries may include a set of electrodes located within the housing. The set of electrodes may be positioned within the second interior region of the housing. The batteries may include a cap at least partially contained within the first interior region of the housing. The batteries may also include a first insulator positioned within the housing. The first insulator may extend across the circumferential indentation from the cap to the set of electrodes.
    Type: Application
    Filed: October 14, 2019
    Publication date: February 6, 2020
    Applicant: Apple Inc.
    Inventors: Christopher R. Pasma, YooEup Hyung, Brian K. Shiu, Stephen J. Wisler
  • Publication number: 20190341587
    Abstract: The disclosed technology relates to an electrical feedthrough for a battery cell. The electrical feedthrough may include a rivet, an outer gasket, an inner gasket, a terminal and an insulator. The rivet compresses the outer gasket, inner gasket, and terminal to create a hermetic seal at an opening through an enclosure of the battery cell. The inner gasket includes a recessed portion for seating of the terminal to prevent rotation of the terminal with respect to the inner gasket, a protrusion for engaging a corresponding notch on the terminal to further prevent rotation of the terminal with respect to the inner gasket, and a mating surface for attaching to the insulator to align and position the insulator within the enclosure. The insulator is positioned between the battery cell and the inner gasket to prevent physical and electrical contact between the set of layers and the feedthrough.
    Type: Application
    Filed: July 20, 2018
    Publication date: November 7, 2019
    Inventors: Christopher R. Pasma, Brian K. Shiu
  • Patent number: 10446876
    Abstract: Energy storage devices, battery cells, and batteries of the present technology may include a housing characterized by a first end and a second end opposite the first end. The housing may include a circumferential indentation proximate the first end. The housing may define a first interior region between the first end and the circumferential indentation, and the housing may define a second interior region between the circumferential indentation and the second end. The batteries may include a set of electrodes located within the housing. The set of electrodes may be positioned within the second interior region of the housing. The batteries may include a cap at least partially contained within the first interior region of the housing. The batteries may also include a first insulator positioned within the housing. The first insulator may extend across the circumferential indentation from the cap to the set of electrodes.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: October 15, 2019
    Assignee: Apple Inc.
    Inventors: Christopher R. Pasma, YooEup Hyung, Brian K. Shiu, Stephen J. Wisler
  • Patent number: 10431853
    Abstract: Energy storage devices, battery cells, and batteries of the present technology may include a housing characterized by a first end and a second end opposite the first end. The housing may include a circumferential indentation proximate the first end. The housing may define a first interior region between the first end and the circumferential indentation, and the housing may define a second interior region between the circumferential indentation and the second end. The batteries may include a set of electrodes located within the housing. The set of electrodes may be positioned within the second interior region of the housing. The batteries may include a cap at least partially contained within the first interior region of the housing. The batteries may also include a first insulator positioned within the housing. The first insulator may extend across the circumferential indentation from the cap to the set of electrodes.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: October 1, 2019
    Assignee: Apple Inc.
    Inventors: Christopher R. Pasma, YooEup Hyung, Brian K. Shiu, Stephen J. Wisler
  • Publication number: 20190067652
    Abstract: A battery can assembly may include the use of insulating adhesive between the can and cover. Because the cover and can are electrically isolated from each other, the respective battery terminals may be directly coupled thereto, eliminating a feed-through to connect electrodes to positive and negative terminals. Such an assembly can eliminate the need for an electrically insulated feed-through. Additionally, welding between the cover and can, which in some cases may be difficult due to shape, size, and or restricted access, may also be eliminated. This can allow for significant simplification of the battery assembly process.
    Type: Application
    Filed: April 17, 2018
    Publication date: February 28, 2019
    Inventors: Brian K. Shiu, Christopher R. Pasma
  • Publication number: 20180323475
    Abstract: Energy storage devices, battery cells, and batteries of the present technology may include a housing characterized by a first end and a second end opposite the first end. The housing may include a circumferential indentation proximate the first end. The housing may define a first interior region between the first end and the circumferential indentation, and the housing may define a second interior region between the circumferential indentation and the second end. The batteries may include a set of electrodes located within the housing. The set of electrodes may be positioned within the second interior region of the housing. The batteries may include a cap at least partially contained within the first interior region of the housing. The batteries may also include a first insulator positioned within the housing. The first insulator may extend across the circumferential indentation from the cap to the set of electrodes.
    Type: Application
    Filed: October 27, 2017
    Publication date: November 8, 2018
    Applicant: Apple Inc.
    Inventors: Christopher R. Pasma, YooEup Hyung, Brian K. Shiu, Stephen J. Wisler
  • Publication number: 20180323476
    Abstract: Energy storage devices, battery cells, and batteries of the present technology may include a housing characterized by a first end and a second end opposite the first end. The housing may include a circumferential indentation proximate the first end. The housing may define a first interior region between the first end and the circumferential indentation, and the housing may define a second interior region between the circumferential indentation and the second end. The batteries may include a set of electrodes located within the housing. The set of electrodes may be positioned within the second interior region of the housing. The batteries may include a cap at least partially contained within the first interior region of the housing. The batteries may also include a first insulator positioned within the housing. The first insulator may extend across the circumferential indentation from the cap to the set of electrodes.
    Type: Application
    Filed: July 17, 2018
    Publication date: November 8, 2018
    Applicant: Apple Inc.
    Inventors: Christopher R. Pasma, YooEup Hyung, Brian K. Shiu, Stephen J. Wisler
  • Publication number: 20180083312
    Abstract: Electrical feedthroughs are presented that are integrated within a wall of a battery housing. In some embodiments, an electrical feedthrough includes a battery housing defining an opening. The electrical feedthrough also includes a collar disposed around the opening and forming a single body with the wall. The electrical feedthrough also includes an electrically-conductive terminal disposed through the collar. The electrical feedthrough additionally includes an electrically-insulating material disposed between the collar and the electrically-conductive terminal and forming a seal therebetween. In some embodiments, the wall has a thickness equal to or less than 1 mm. In some embodiments, the collar protrudes into the battery housing. In other embodiments, the collar protrudes out of the battery housing. In some embodiments, a cross-sectional area of the electrically-conductive terminal is at least 40% of an area bounded by an outer perimeter of the collar.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 22, 2018
    Inventors: Brian K. Shiu, Christopher R. Pasma, Haran Balaram
  • Patent number: 9634351
    Abstract: The disclosed embodiments relate to the design and manufacture of a battery cell. The battery cell includes a jelly roll containing layers which are wound together, including a cathode with an active coating, a separator, and an anode with an active coating. The battery cell also includes a mechanical structure disposed around a perimeter of the jelly roll to maintain a structural integrity of the jelly roll. Finally, the battery cell includes a pouch enclosing the mechanical structure and the jelly roll, wherein the pouch is flexible.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: April 25, 2017
    Assignee: Apple Inc.
    Inventors: Christopher R. Pasma, George V. Anastas, Richard M. Mank
  • Publication number: 20170092923
    Abstract: Battery cells are presented that have notched electrodes. In one embodiment, the battery cells have a first notch in an electrode and a second notch in a seal. The second notch allows a first portion of the seal adjacent the first edge to fold without overlapping a second portion of the seal adjacent the second edge. The first notch serves as a relief zone that enables the seal to maintain a seal distance during folding. In another embodiment, the battery cells have a first notch in an electrode and a second notch in a portion of a separator. The first notch and the second notch, in combination, allow the separator to fold along a fold line without tearing. Other battery cells are presented.
    Type: Application
    Filed: September 9, 2016
    Publication date: March 30, 2017
    Inventors: Christopher R. Pasma, Stephen J. Wisler, Brian K. Shiu, Yuriy Londarenko
  • Publication number: 20160293995
    Abstract: Aspects of the present disclosure involve various battery can designs. In general, the battery can design includes two fitted surfaces oriented opposite each other and seam welded together to form an enclosure in which a battery stack is located. To form the enclosure, the two fitted surfaces are welded together along the large perimeter. Other swelling-resisting advantages may also be achieved utilizing the battery can design described herein including, but not limited to, the ability to modify one or more can wall thicknesses to control a pressure applied to the battery stack by the can, overall reduction in wall thickness of the can through the use of stronger materials for the can surfaces, additional supports structures included within the can design, and/or bossing or other localized thinning of surfaces of the can.
    Type: Application
    Filed: April 1, 2016
    Publication date: October 6, 2016
    Inventors: Christopher R. Pasma, Siddharth Mohapatra, George V. Anastas, Bookeun Oh, YooEup Hyung, Brian K. Shiu, Haran Balaram, Junhua Liu
  • Publication number: 20150263378
    Abstract: The disclosed embodiments relate to the design and manufacture of a battery cell. The battery cell includes a jelly roll containing layers which are wound together, including a cathode with an active coating, a separator, and an anode with an active coating. The battery cell also includes a mechanical structure disposed around a perimeter of the jelly roll to maintain a structural integrity of the jelly roll. Finally, the battery cell includes a pouch enclosing the mechanical structure and the jelly roll, wherein the pouch is flexible.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 17, 2015
    Applicant: APPLE INC.
    Inventors: Christopher R. Pasma, George V. Anastas, Richard M. Mank
  • Patent number: D843933
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: March 26, 2019
    Assignee: Apple Inc.
    Inventors: Joss Giddings, Christopher R. Pasma, David M. Rockford, Mikael Silvanto, Stephen Jacobs Wisler