Patents by Inventor Christopher Rexer

Christopher Rexer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080042143
    Abstract: A method and device for protecting wide bandgap devices from failing during suppression of voltage transients. An improvement in avalanche capability is achieved by placing one or more diodes, or a PNP transistor, across the blocking junction of the wide bandgap device.
    Type: Application
    Filed: July 25, 2007
    Publication date: February 21, 2008
    Inventors: Joseph Yedinak, Richard Woodin, Christopher Rexer, Praveen Shenoy, Kwanghoon Oh, Chongman Yun
  • Publication number: 20060267090
    Abstract: A monolithically integrated field effect transistor and Schottky diode includes gate trenches extending into a semiconductor region. Source regions having a substantially triangular shape flank each side of the gate trenches. A contact opening extends into the semiconductor region between adjacent gate trenches. A conductor layer fills the contact opening to electrically contact: (a) the source regions along at least a portion of a slanted sidewall of each source region, and (b) the semiconductor region along a bottom portion of the contact opening, wherein the conductor layer forms a Schottky contact with the semiconductor region.
    Type: Application
    Filed: April 4, 2006
    Publication date: November 30, 2006
    Inventors: Steven Sapp, Hamza Yilmaz, Christopher Rexer, Daniel Calafut
  • Publication number: 20060214221
    Abstract: Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented.
    Type: Application
    Filed: May 31, 2006
    Publication date: September 28, 2006
    Inventors: Ashok Challa, Alan Elbanhawy, Thomas Grebs, Nathan Kraft, Dean Probst, Rodney Ridley, Steven Sapp, Qi Wang, Chongman Yun, J.G. Lee, Peter Wilson, Joseph Yedinak, J.Y. Jung, H.C. Jang, Babak Sani, Richard Stokes, Gary Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James Murphy, Gordon Madson, Bruce Marchant, Christopher Rexer, Christopher Kocon, Debra Woolsey
  • Publication number: 20060214222
    Abstract: Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented.
    Type: Application
    Filed: May 31, 2006
    Publication date: September 28, 2006
    Inventors: Ashok Challa, Alan Elbanhawy, Thomas Grebs, Nathan Kraft, Dean Probst, Rodney Ridley, Steven Sapp, Qi Wang, Chongman Yun, J. Lee, Peter Wilson, Joseph Yedinak, J. Jung, H. Jang, Babak Sani, Richard Stokes, Gary Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James Murphy, Gordon Madson, Bruce Marchant, Christopher Rexer, Christopher Kocon, Debra Woolsey
  • Publication number: 20050199918
    Abstract: In accordance with the present invention, a monolithically integrated structure combines a field effect transistor and a Schottky structure in an active area of a semiconductor substrate. The field effect transistor includes a first trench extending into the substrate and substantially filled by conductive material forming a gate electrode of the field effect transistor. A pair of doped source regions are positioned adjacent to and on opposite sides of the trench and inside a doped body region. The Schottky structure includes a pair of adjacent trenches extending into the substrate. Each of the pair of adjacent trenches is substantially filled by a conductive material which is separated from trench side-walls by a thin layer of dielectric. The Schottky structure consumes 2.5% to 5.0% of the active area, and the field effect transistor consumes the remaining portion of the active area.
    Type: Application
    Filed: March 15, 2004
    Publication date: September 15, 2005
    Inventors: Daniel Calafut, Christopher Rexer
  • Publication number: 20050167742
    Abstract: Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented.
    Type: Application
    Filed: December 29, 2004
    Publication date: August 4, 2005
    Applicant: Fairchild Semiconductor Corp.
    Inventors: Ashok Challa, Alan Elbanhawy, Thomas Grebs, Nathan Kraft, Dean Probst, Rodney Ridley, Steven Sapp, Qi Wang, Chongman Yun, J.G. Lee, Peter Wilson, Joseph Yedinak, J.Y. Jung, H.C. Jang, Babak Sani, Richard Stokes, Gary Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James Murphy, Gordon Madson, Bruce Marchant, Christopher Rexer, Christopher Kocon, Debra Woolsey