Patents by Inventor Christopher Rowlands

Christopher Rowlands has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10520715
    Abstract: The information budget of a light field microscope is increased by increasing the field of view and image circle diameter of the microscope, while keeping the ratio of overall magnification of the microscope to the numerical aperture of the microscope unchanged. Alternatively, the information budget is increased by increasing the field of view and image circle diameter of the microscope by a first factor, while increasing the ratio of overall magnification of the microscope to the numerical aperture of the microscope by a smaller, second factor. In some cases, an infinity-corrected light field microscope has an overall magnification that is greater than the nominal magnification of the objective lens.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: December 31, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Moshe Ben Ezra, Edward Boyden, Christopher Rowlands, Young Gyu Yoon
  • Publication number: 20190393019
    Abstract: A system having an auxiliary plasma source, disposed proximate the workpiece, for use with an ion beam is disclosed. The auxiliary plasma source is used to create ions and radicals which drift toward the workpiece and may form a film. The ion beam is then used to provide energy so that the ions and radicals can process the workpiece. Further, various applications of the system are also disclosed. For example, the system can be used for various processes including deposition, implantation, etching, pre-treatment and post-treatment. By locating an auxiliary plasma source close to the workpiece, processes that were previously not possible may be performed. Further, two dissimilar processes, such as cleaning and implanting or implanting and passivating can be performed without removing the workpiece from the end station.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 26, 2019
    Inventors: Christopher Hatem, Peter F. Kurunczi, Christopher A. Rowland, Joseph C. Olson, Anthony Renau
  • Patent number: 10514534
    Abstract: The information budget of a light field microscope is increased by increasing the field of view and image circle diameter of the microscope, while keeping the ratio of overall magnification of the microscope to the numerical aperture of the microscope unchanged. Alternatively, the information budget is increased by increasing the field of view and image circle diameter of the microscope by a first factor, while increasing the ratio of overall magnification of the microscope to the numerical aperture of the microscope by a smaller, second factor. In some cases, an infinity-corrected light field microscope has an overall magnification that is greater than the nominal magnification of the objective lens.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: December 24, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Moshe Ben Ezra, Edward Boyden, Christopher Rowlands, Young Gyu Yoon
  • Publication number: 20190090338
    Abstract: Embodiments described herein generally relate to plasma assisted or plasma enhanced processing chambers. More specifically, embodiments herein relate to electrostatic chucking (ESC) substrate supports configured to provide pulsed DC voltage, and methods of applying a pulsed DC voltage, to a substrate during plasma assisted or plasma enhanced semiconductor manufacturing processes.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 21, 2019
    Inventors: Travis Lee KOH, Haitao WANG, Philip Allan KRAUS, Vijay D. PARKHE, Daniel DISTASO, Christopher A. ROWLAND, Mark MARKOVSKY, Robert CASANOVA
  • Publication number: 20190041624
    Abstract: The information budget of a light field microscope is increased by increasing the field of view and image circle diameter of the microscope, while keeping the ratio of overall magnification of the microscope to the numerical aperture of the microscope unchanged. Alternatively, the information budget is increased by increasing the field of view and image circle diameter of the microscope by a first factor, while increasing the ratio of overall magnification of the microscope to the numerical aperture of the microscope by a smaller, second factor. In some cases, an infinity-corrected light field microscope has an overall magnification that is greater than the nominal magnification of the objective lens.
    Type: Application
    Filed: October 9, 2018
    Publication date: February 7, 2019
    Inventors: Moshe Ben Ezra, Edward Boyden, Christopher Rowlands, Young Gyu Yoon
  • Publication number: 20190041625
    Abstract: The information budget of a light field microscope is increased by increasing the field of view and image circle diameter of the microscope, while keeping the ratio of overall magnification of the microscope to the numerical aperture of the microscope unchanged. Alternatively, the information budget is increased by increasing the field of view and image circle diameter of the microscope by a first factor, while increasing the ratio of overall magnification of the microscope to the numerical aperture of the microscope by a smaller, second factor. In some cases, an infinity-corrected light field microscope has an overall magnification that is greater than the nominal magnification of the objective lens.
    Type: Application
    Filed: October 10, 2018
    Publication date: February 7, 2019
    Inventors: Moshe Ben Ezra, Edward Boyden, Christopher Rowlands, Young Gyu Yoon
  • Patent number: 10177498
    Abstract: An electrical connector assembly which has a first connector and a second connector. The first connector and second connector have connector housings with first latching areas extending from the top surfaces of the connector housings and second latching areas extending from the bottom surfaces of the connector housing. Sealing members are positioned proximate wire-receiving faces of the connector housings. Rear seal cover members are positioned in the connector housings. The rear seal cover members are configured to cooperate with the sealing members to prevent the rear seal cover members from being latched to the connector housing when the terminals are not fully inserted into the terminal receiving cavities of the connector housings.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: January 8, 2019
    Assignee: TE CONNECTIVITY CORPORATION
    Inventors: Chong Hun Yi, Matthew David Morrison, Christopher Rowland
  • Patent number: 10120180
    Abstract: The information budget of a light field microscope is increased by increasing the field of view and image circle diameter of the microscope, while keeping the ratio of overall magnification of the microscope to the numerical aperture of the microscope unchanged. Alternatively, the information budget is increased by increasing the field of view and image circle diameter of the microscope by a first factor, while increasing the ratio of overall magnification of the microscope to the numerical aperture of the microscope by a smaller, second factor. In some cases, an infinity-corrected light field microscope has an overall magnification that is greater than the nominal magnification of the objective lens.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: November 6, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Moshe Ben Ezra, Edward Boyden, Christopher Rowlands, Young Gyu Yoon
  • Publication number: 20180240670
    Abstract: A method of doping a substrate. The method may include implanting a dose of a helium species into the substrate through a surface of the substrate at an implant temperature of 300° C. or greater. The method may further include depositing a doping layer containing a dopant on the surface of the substrate, and annealing the substrate at an anneal temperature, the anneal temperature being greater than the implant temperature.
    Type: Application
    Filed: April 16, 2018
    Publication date: August 23, 2018
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Christopher R. Hatem, Christopher A. Rowland
  • Publication number: 20180221948
    Abstract: An additive manufacturing system includes a platen to support an object to be fabricated, a dispenser assembly positioned above the platen, and an energy source configured to selectively fuse a layer of powder. The dispenser assembly includes a first dispenser, a second dispenser, and a drive system. The first dispenser delivers a first powder in a first linear region that extends along a first axis, and the second dispenser delivers a second powder in a second linear region that extends parallel to the first linear region and is offset from the first linear region along a second axis perpendicular to the first axis. The drive system a drive system moves the support with the first dispenser and second dispenser together along the second axis.
    Type: Application
    Filed: March 30, 2018
    Publication date: August 9, 2018
    Inventors: Christopher A. Rowland, Anantha K. Subramani, Kasiraman Krishnan, Kartik Ramaswamy, Thomas B. Brezoczky, Swaminathan Srinivasan, Jennifer Y. Sun, Simon Yavelberg, Srinivas D. Nemani, Nag B. Patibandla, Hou T. Ng
  • Publication number: 20180221949
    Abstract: An additive manufacturing system includes a platen, a dispenser configured to deliver a powder in a linear region that extends across less than all of a width of the platen, a drive system configured to move the dispenser along the first axis and a perpendicular second axis, a controller, and an energy source configured to selectively fuse a layer of powder. The controller is configured to cause the drive system to move the dispenser along the second axis a first time such that the linear region makes a first sweep along the second axis to deposit the powder in a first swath over the platen, thereafter along the first axis, and thereafter along the second axis a second time such that the first linear region makes a second sweep along the second axis to deposit the powder in a parallel second swath over the platen.
    Type: Application
    Filed: March 30, 2018
    Publication date: August 9, 2018
    Inventors: Christopher A. Rowland, Anantha K. Subramani, Kasiraman Krishnan, Kartik Ramaswamy, Thomas B. Brezoczky, Swaminathan Srinivasan, Jennifer Y. Sun, Simon Yavelberg, Srinivas D. Nemani, Nag B. Patibandla, Hou T. Ng
  • Patent number: 10012591
    Abstract: The disclosure relates to measurement and classification of tissue structures in samples using a combination of light imaging and spectroscopy, in particular although not necessarily exclusively for detection of tumors such as basal cell carcinoma or breast tumors in tissue samples. Embodiments disclosed include a method of automatically identifying tissue structures in a sample, the method comprising the steps of: measuring (1702, 1703) a response of an area of the sample to illumination with light; identifying (1704) regions within the area having a measured response within a predetermined range; determining (1705) locations within the identified regions; performing (1706) spectroscopic analysis of the sample at the determined locations; and identifying (1707) a tissue structure for each region from the spectroscopic analysis performed on one or more locations therein.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: July 3, 2018
    Assignees: The University of Nottingham, Royal Holloway University of London
    Inventors: Ioan Notingher, Kenny Kong, Christopher Rowlands, Hywel Williams, Iain Leach, Sandeep Varma, William Perkins, Alexey Koloydenko
  • Patent number: 9953835
    Abstract: A method of doping a substrate. The method may include implanting a dose of a helium species into the substrate through a surface of the substrate at an implant temperature of 300° C. or greater. The method may further include depositing a doping layer containing a dopant on the surface of the substrate, and annealing the substrate at an anneal temperature, the anneal temperature being greater than the implant temperature.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: April 24, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Christopher R. Hatem, Christopher A. Rowland
  • Publication number: 20180082824
    Abstract: A workpiece processing apparatus allowing independent control of the voltage applied to the shield ring and the workpiece is disclosed. The workpiece processing apparatus includes a platen. The platen includes a dielectric material on which a workpiece is disposed. A bias electrode is disposed beneath the dielectric material. A shield ring, which is constructed from a metal, ceramic, semiconductor or dielectric material, is arranged around the perimeter of the workpiece. A ring electrode is disposed beneath the shield ring. The ring electrode and the bias electrode may be separately powered. This allows the surface voltage of the shield ring to match that of the workpiece, which causes the plasma sheath to be flat. Additionally, the voltage applied to the shield ring may be made different from that of the workpiece to compensate for mismatches in geometries. This improves uniformity of incident angles along the outer edge of the workpiece.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 22, 2018
    Inventors: Alexandre Likhanskii, Maureen Petterson, John Hautala, Anthony Renau, Christopher A. Rowland, Costel Biloiu
  • Publication number: 20180065178
    Abstract: An additive manufacturing system that includes a platen, a feed material delivery system configured to deliver feed material to a location on the platen specified by a computer aided design program and a heat source configured to raise a temperature of the feed material simultaneously across all of the layer or across a region that extends across a width of the platen and scans the region across a length of the platen. The heat source can be an array of heat lamps, or a plasma source.
    Type: Application
    Filed: October 9, 2017
    Publication date: March 8, 2018
    Inventors: Christopher A. Rowland, Anantha K. Subramani, Kasiraman Krishnan, Kartik Ramaswamy, Thomas B. Brezoczky, Swaminathan Srinivasan, Jennifer Y. Sun, Simon Yavelberg, Srinivas D. Nemani, Nag B. Patibandla, Hou T. Ng
  • Publication number: 20170203363
    Abstract: An additive manufacturing system that includes a platen, a feed material delivery system configured to deliver feed material to a location on the platen specified by a computer aided design program and a heat source configured to raise a temperature of the feed material simultaneously across all of the layer or across a region that extends across a width of the platen and scans the region across a length of the platen. The heat source can be an array of heat lamps, or a plasma source.
    Type: Application
    Filed: July 8, 2015
    Publication date: July 20, 2017
    Inventors: Christopher A. Rowland, Anantha K. Subramani, Kasiraman Krishnan, Kartik Ramaswamy, Thomas B. Brezoczky, Swaminathan Srinivasan, Jennifer Y. Sun, Simon Yavelberg, Srinivas D. Nemani, Nag B. Patibandla, Hou T. Ng
  • Publication number: 20170203364
    Abstract: An additive manufacturing system includes a platen, a feed material dispenser apparatus configured to deliver a feed material over the platen, a laser configured to produce a laser beam, a controller configured to direct the laser beam to locations specified by data stored in a computer-readable medium to cause the feed material to fuse, and a plasma source configured to produce ions that are directed to substantially the same location on the platen as the laser beam.
    Type: Application
    Filed: July 16, 2015
    Publication date: July 20, 2017
    Inventors: Kartik Ramaswamy, Anantha K. Subramani, Kasiraman Krishnan, Jennifer Y. Sun, Srinivas D. Nemani, Thomas B. Brezoczky, Christopher A. Rowland, Simon Yavelberg, Swaminathan Srinivasan, Nag B. Patibandla, Ellie Y. Yieh, Hou T. Ng
  • Publication number: 20170182556
    Abstract: An additive manufacturing system includes a platen, a feed material dispenser apparatus configured to deliver a feed material onto the platen, a laser source configured to produce a laser beam during use of the additive manufacturing system, a controller configured to direct the laser beam to locations on the platen specified by a computer aided design program to cause the feed material to fuse, a gas source configured to supply gas, and a nozzle configured to accelerate and direct the gas to substantially the same location on the platen as the laser beam.
    Type: Application
    Filed: July 16, 2015
    Publication date: June 29, 2017
    Inventors: Kartik Ramaswamy, Anantha K. Subramani, Kasiraman Krishnan, Jennifer Y. Sun, Thomas B. Brezoczky, Christopher A. Rowland, Srinivas D. Nemani, Swaminathan Srinivasan, Simon Yavelberg, Ellie Y. Yieh, Hou T. Ng
  • Publication number: 20170178908
    Abstract: A method of doping a substrate. The method may include implanting a dose of a helium species into the substrate through a surface of the substrate at an implant temperature of 300 ° C. or greater. The method may further include depositing a doping layer containing a dopant on the surface of the substrate, and annealing the substrate at an anneal temperature, the anneal temperature being greater than the implant temperature.
    Type: Application
    Filed: January 23, 2017
    Publication date: June 22, 2017
    Inventors: Christopher R. Hatem, Christopher A. Rowland
  • Patent number: 9589802
    Abstract: A method of doping a substrate. The method may include implanting a dose of a helium species into the substrate through a surface of the substrate at an implant temperature of 300° C. or greater. The method may further include depositing a doping layer containing a dopant on the surface of the substrate, and annealing the substrate at an anneal temperature, the anneal temperature being greater than the implant temperature.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: March 7, 2017
    Assignee: Varian Semuconductor Equipment Associates, Inc.
    Inventors: Christopher R. Hatem, Christopher A. Rowland