Patents by Inventor Christopher S. de Voir

Christopher S. de Voir has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11566885
    Abstract: A method for estimating an offset between a first group and a second group of contacts with respect to a longitudinal direction. Each group of contacts includes a plurality of electrodes arranged along a surface of a body of a lead. The method includes the steps of: (a) Selecting a number of electrode pairs, each electrode pair including an electrode of the first contact group and an electrode of the second contact group, and measuring the impedances between the electrodes of each selected electrode pair; (b) pre-conditioning the measured impedances for attenuating unwanted noise to generate pre-conditioned impedances, and (c) determining the lead offset using the pre-conditioned impedances.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: January 31, 2023
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Pamela Shamsie Victoria Riahi, Andrew B. Kibler, Sean Slee, Christopher S. De Voir
  • Publication number: 20210387009
    Abstract: An implantable cardiac pacemaker, wherein the pacemaker is configured to apply pacing pulses to the heart of a person during operation of the pacemaker, and wherein the pacemaker comprises a motion detection system that comprises a first module and a second module. The first module is configured to continuously run during operation of the pacemaker. The second module is configured to receive a trigger signal to change from an idle state to an active state or to receive a further trigger signal to change from an active state to an idle state. An energy consumption per time unit of the second module in the active state is larger than in the idle state. When the second module is in its active state, the second module is configured to execute a rate adaptation algorithm that adapts a rate of the pacing pulses to meet a metabolic demand of the person.
    Type: Application
    Filed: September 11, 2019
    Publication date: December 16, 2021
    Applicant: BIOTRONIK SE & Co. KG
    Inventors: Min Qu, Andrew B. Kibler, Christopher S. de Voir
  • Patent number: 10928181
    Abstract: A method for estimating an offset between a first group and a second group of contacts with respect to a longitudinal direction. Each group of contacts includes a plurality of electrodes arranged along a surface of a body of a lead. The method includes the steps of: (a) Selecting a number of electrode pairs, each electrode pair including an electrode of the first contact group and an electrode of the second contact group, and measuring the impedances between the electrodes of each selected electrode pair; (b) pre-conditioning the measured impedances for attenuating unwanted noise to generate pre-conditioned impedances, and (c) determining the lead offset using the pre-conditioned impedances.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: February 23, 2021
    Assignee: BIOTRONIK SE & CO. KG
    Inventors: Pamela Shamsie Victoria Riahi, Andrew B. Kibler, Sean Slee, Christopher S. De Voir
  • Publication number: 20210025688
    Abstract: A method for estimating an offset between a first group and a second group of contacts with respect to a longitudinal direction. Each group of contacts includes a plurality of electrodes arranged along a surface of a body of a lead. The method includes the steps of: (a) Selecting a number of electrode pairs, each electrode pair including an electrode of the first contact group and an electrode of the second contact group, and measuring the impedances between the electrodes of each selected electrode pair; (b) pre-conditioning the measured impedances for attenuating unwanted noise to generate pre-conditioned impedances, and (c) determining the lead offset using the pre-conditioned impedances.
    Type: Application
    Filed: October 15, 2020
    Publication date: January 28, 2021
    Inventors: Pamela Shamsie Victoria Riahi, Andrew B. Kibler, Sean Slee, Christopher S. De Voir
  • Publication number: 20200132434
    Abstract: A method for estimating an offset between a first group and a second group of contacts with respect to a longitudinal direction. Each group of contacts includes a plurality of electrodes arranged along a surface of a body of a lead. The method includes the steps of: (a) Selecting a number of electrode pairs, each electrode pair including an electrode of the first contact group and an electrode of the second contact group, and measuring the impedances between the electrodes of each selected electrode pair; (b) pre-conditioning the measured impedances for attenuating unwanted noise to generate pre-conditioned impedances, and (c) determining the lead offset using the pre-conditioned impedances.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 30, 2020
    Inventors: PAMELA SHAMSIE VICTORIA RIAHI, ANDREW B. KIBLER, SEAN SLEE, CHRISTOPHER S. DE VOIR
  • Patent number: 10292599
    Abstract: An implantable cardiac device is provided. The implantable cardiac device includes a sensing unit adapted to measure an intrathoracic or intracardiac impedance, pressure, and/or accelerometry input stream, which includes a patient's respiratory waveforms. Furthermore, the implantable cardiac device includes a quantizer-unit adapted to sample the input stream with an initial sampling frequency Fs, providing input samples of the input stream. The implantable cardiac device further includes a filter bank 50 suited to perform a streaming Wavelet transformation on the input samples on a sample-by-sample basis, using the initial sampling frequency Fs provided by the quantizer-unit, wherein the streaming Wavelet transformation is adapted to perform a source separation, extracting, and separating the respiratory waveforms of the input stream.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: May 21, 2019
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Christopher S. de Voir, J. Christopher Moulder, Jie Lian, Dirk Muessig
  • Publication number: 20180206786
    Abstract: A system for evaluating an efficacy of vagus nerve stimulation is provided, wherein the system has a neurostimulator that is configured to perform vagus nerve stimulation, and a measuring component for evaluating the efficacy based on at least one parameter that is indicative of a myocardial contractile state of the heart. A corresponding method is also provided.
    Type: Application
    Filed: January 24, 2018
    Publication date: July 26, 2018
    Applicant: BIOTRONIK SE & Co. KG
    Inventors: Christopher S. de VOIR, Andrew B. KIBLER, Dirk MUESSIG
  • Patent number: 9456759
    Abstract: A device that monitors and evaluates electrogram signals representing electric activities of a heart chamber, and includes a signal input connected to a mapping catheter, and a signal processing and evaluation unit. The mapping catheter includes one or more electrode poles that pick up electric potentials and generate electrogram signals therefrom.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: October 4, 2016
    Assignee: BIOTRONIK SE & CO. KG
    Inventors: Jie Lian, Christopher S. de Voir
  • Patent number: 9020584
    Abstract: A cardiac device and method for detecting QRS signals within a composite heart signal of a body including providing at least two input heart signals via at least two separate input channels, wherein each of the at least two input heart signals is recorded by pairs of sensing electrodes that have one electrode in common and provided coincidental in time. The cardiac device and method include generating estimated signals from the input heart signals, combining the input heart signals and the estimated signals to a combined input stream (SECG), and detecting the QRS signal by comparing the combined input stream (SECG) to an adaptive detection threshold (ATHR) which adapts throughout time.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: April 28, 2015
    Assignee: Biotronik SE & Co. KG
    Inventors: J. Christopher Moulder, Christopher S. de Voir, R. Hollis Whittington, Garth Garner
  • Publication number: 20150080752
    Abstract: A device that monitors and evaluates electrogram signals representing electric activities of a heart chamber, and includes a signal input connected to a mapping catheter, and a signal processing and evaluation unit. The mapping catheter includes one or more electrode poles that pick up electric potentials and generate electrogram signals therefrom.
    Type: Application
    Filed: August 25, 2014
    Publication date: March 19, 2015
    Applicant: BIOTRONIK SE & CO. KG
    Inventors: Jie LIAN, Christopher S. de Voir
  • Publication number: 20140309539
    Abstract: An implantable cardiac device is provided. The implantable cardiac device includes a sensing unit adapted to measure an intrathoracic or intracardiac impedance, pressure, and/or accelerometry input stream, which includes a patient's respiratory waveforms. Furthermore, the implantable cardiac device includes a quantizer-unit adapted to sample the input stream with an initial sampling frequency Fs, providing input samples of the input stream. The implantable cardiac device further includes a filter bank 50 suited to perform a streaming Wavelet transformation on the input samples on a sample-by-sample basis, using the initial sampling frequency Fs provided by the quantizer-unit, wherein the streaming Wavelet transformation is adapted to perform a source separation, extracting, and separating the respiratory waveforms of the input stream.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 16, 2014
    Inventors: Christopher S. de Voir, J. Christopher Moulder, Jie Lian, Dirk Muessig
  • Publication number: 20140236034
    Abstract: A cardiac device and method for detecting QRS signals within a composite heart signal of a body including providing at least two input heart signals via at least two separate input channels, wherein each of the at least two input heart signals is recorded by pairs of sensing electrodes that have one electrode in common and provided coincidental in time. The cardiac device and method include generating estimated signals from the input heart signals, combining the input heart signals and the estimated signals to a combined input stream (SECG), and detecting the QRS signal by comparing the combined input stream (SECG) to an adaptive detection threshold (ATHR) which adapts throughout time.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 21, 2014
    Inventors: J. Christopher Moulder, Christopher S. de Voir, R. Hollis Whittington, Garth Garner
  • Patent number: 8394029
    Abstract: The invention refers to a monitoring device for monitoring and analyzing physiological signals. The monitoring device comprises a transthoracic impedance measurement unit and an evaluation unit connected to the transthoracic impedance measurement unit. The transthoracic impedance measurement unit is adapted to conduct a transthoracic impedance measurement and to generate a transthoracic impedance signal representing a measured transthoracic impedance at consecutive points in time. The evaluation unit being configured to process the transthoracic impedance signal received from the transthoracic impedance measurement unit and to thus generate a respiration signal and to generate therefrom an evaluation signal reflecting at least a diurnal pattern of the respiration rate.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: March 12, 2013
    Assignee: Biotronik CRM Patent AG
    Inventors: Jie Lian, Sharon Lefkov, Dirk Muessig, Christopher S. de Voir, Michael V. Orlov
  • Patent number: 7985185
    Abstract: Heart monitoring apparatus with sensing stage connectable to intracardiac electrode picking up electric potentials and adapted to process electric signals representing a time course of said potentials, a mechanical action detection stage adapted to generate a geometry signal having a time course reflecting heart chamber's geometry change, an evaluation unit connected to sensing stage and impedance measuring stage and adapted to determine a first and second fiducial point in the time course of said potentials and geometry signal, respectively, both fiducial points belonging to same heart cycle, and to determine a measured time delay between said fiducial points. Evaluation unit adapted to repeat said determined time delay to determine plurality of measured time delays and variance thereof or divergence of the statistical properties of cycle times based on said time course of said electric potentials versus cycle times based on said time course reflecting a change of a heart chamber's geometry.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: July 26, 2011
    Assignee: Biotronik CRM Patent AG
    Inventors: Christopher S. De Voir, Dirk Muessig, Sharon Lefkov, Michael V. Orlov
  • Patent number: 7970462
    Abstract: Implantable medical device with an impedance determination unit with constant current/voltage source having current feed terminals connected to electrodes for intracorporal placement which generates measuring current pulses having constant current/voltage, for causing a current through a body via intracorporally placed electrodes, a measuring unit for measuring voltage/current strength of voltage/current fed through body, an impedance value determination unit connected to the current/voltage source and adapted to determine an impedance value for each measuring current pulse, and an impedance measuring control and evaluation unit connected to the impedance determination unit which controls the unit and evaluates a sequence of consecutive impedance values, the impedance determination unit further adapted to determine at least intrathoracic and intracardiac impedance values for same period of time, the intrathoracic values sampled with a lower sampling rate than the intracardiac values.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: June 28, 2011
    Assignee: Biotronik CRM Patent AG
    Inventors: Sharon Lefkov, David F. Hastings, Christopher S. de Voir, Garth Garner, Dirk Muessig, Hannes Kraetschmer
  • Patent number: 7822475
    Abstract: An implantable medical device comprises at least two sensing channels for receiving sensed first and second location electrical signals originating from two different locations of a heart. A control unit is connected to the sensing channels and is adapted to process sensed electrical signals originating from first and second locations of the heart. The control unit incorporates an adaptive filter compensator adapted to generate an estimate signal for compensating a far-field contribution of the second location signal to the first location signal, thereby generating an output signal representing a near field signal originating from the first location. A gate is connected to the second location sensing channel and is adapted to enable the adaptive filter compensator only if a predetermined signal is sensed via the second location sensing channel.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: October 26, 2010
    Assignee: Biotronik CRM Patent AG
    Inventors: Richard A. Schomburg, Christopher S. de Voir, Dirk Muessig
  • Patent number: 7761163
    Abstract: The invention relates to heart stimulators and implantable atrial pacemakers which utilize a rhythm based atrial capture threshold test wherein in a ventricle based DDI mode a predetermined number of ventricle started atrial and ventricular escape intervals are triggered with an overdrive rate about 20% higher than an intrinsic heart rate. The number of atrial sense events during atrial capture threshold test is counted. Too high of a number of atrial sense events indicates loss of capture due to too small of a pulse strength of the atrial stimulation pulses.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: July 20, 2010
    Assignee: Biotronik CRM Patent AG
    Inventors: Christopher S. de Voir, Jie Lian, Richard A. Schomburg, Duane Patterson, Hannes Kraetschmer, Dirk Muessig
  • Patent number: 7751873
    Abstract: A depolarization waveform classifier based on the Modified lifting line wavelet Transform is described. Overcomes problems in existing rate-based event classifiers. A task for pacemaker/defibrillators is the accurate identification of rhythm categories so correct electrotherapy can be administered. Because some rhythms cause rapid dangerous drop in cardiac output, it's desirable to categorize depolarization waveforms on a beat-to-beat basis to accomplish rhythm classification as rapidly as possible. Although rate based methods of event categorization have served well in implanted devices, these methods suffer in sensitivity and specificity when atrial/ventricular rates are similar. Human experts differentiate rhythms by morphological features of strip chart electrocardiograms. The wavelet transform approximates human expert analysis function because it correlates distinct morphological features at multiple scales.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: July 6, 2010
    Assignee: Biotronik CRM Patent AG
    Inventor: Christopher S. de Voir
  • Publication number: 20090312649
    Abstract: The invention refers to a monitoring device for monitoring and analyzing physiological signals. The monitoring device comprises a transthoracic impedance measurement unit and an evaluation unit connected to the transthoracic impedance measurement unit. The transthoracic impedance measurement unit is adapted to conduct a transthoracic impedance measurement and to generate a transthoracic impedance signal representing a measured transthoracic impedance at consecutive points in time. The evaluation unit being configured to process the transthoracic impedance signal received from the transthoracic impedance measurement unit and to thus generate a respiration signal and to generate therefrom an evaluation signal reflecting at least a diurnal pattern of the respiration rate.
    Type: Application
    Filed: June 1, 2009
    Publication date: December 17, 2009
    Inventors: Jie Lian, Sharon Lefkov, Dirk Muessig, Christopher S. de Voir, Michael V. Orlov
  • Publication number: 20090299203
    Abstract: Heart monitoring apparatus with sensing stage connectable to intracardiac electrode picking up electric potentials and adapted to process electric signals representing a time course of said potentials, a mechanical action detection stage adapted to generate a geometry signal having a time course reflecting heart chamber's geometry change, an evaluation unit connected to sensing stage and impedance measuring stage and adapted to determine a first and second fiducial point in the time course of said potentials and geometry signal, respectively, both fiducial points belonging to same heart cycle, and to determine a measured time delay between said fiducial points. Evaluation unit adapted to repeat said determined time delay to determine plurality of measured time delays and variance thereof or divergence of the statistical properties of cycle times based on said time course of said electric potentials versus cycle times based on said time course reflecting a change of a heart chamber's geometry.
    Type: Application
    Filed: June 3, 2008
    Publication date: December 3, 2009
    Inventors: Christopher S. DE VOIR, Dirk Muessig, Sharon Lefkov, Michael V. Orlov