Patents by Inventor Christopher S Ngai

Christopher S Ngai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11914299
    Abstract: A method for enhancing the depth of focus process window during a lithography process includes applying a photoresist layer comprising a photoacid generator on a material layer disposed on a substrate, exposing a first portion of the photoresist layer unprotected by a photomask to light radiation in a lithographic exposure process, providing a thermal energy to the photoresist layer in a post-exposure baking process, applying an electric field or a magnetic field while performing the post-exposure baking process, and dynamically changing a frequency of the electric field as generated while providing the thermal energy to the photoresist layer.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: February 27, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Huixiong Dai, Mangesh Ashok Bangar, Srinivas D. Nemani, Christopher S. Ngai, Ellie Y. Yieh
  • Patent number: 11880137
    Abstract: Methods and apparatuses for minimizing line edge/width roughness in lines formed by photolithography are provided. In one example, a method of processing a substrate includes applying a photoresist layer comprising a photoacid generator to on a multi-layer disposed on a substrate, wherein the multi-layer comprises an underlayer formed from an organic material, inorganic material, or a mixture of organic and inorganic materials, exposing a first portion of the photoresist layer unprotected by a photomask to a radiation light in a lithographic exposure process, and applying an electric field or a magnetic field to alter movement of photoacid generated from the photoacid generator substantially in a vertical direction.
    Type: Grant
    Filed: March 23, 2023
    Date of Patent: January 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Huixiong Dai, Mangesh Ashok Bangar, Srinivas D. Nemani, Ellie Y. Yieh, Steven Hiloong Welch, Christopher S. Ngai
  • Publication number: 20230389441
    Abstract: Embodiments of the present disclosure generally include spin-orbit torque magnetoresistive random-access memory (SOT-MRAM) devices and methods of manufacture thereof. The SOT-MRAM devices described herein include an SOT layer laterally aligned with a magnetic tunnel junction (MTJ) stack and formed over a trench in an interconnect. Thus, the presence of the SOT layer outside the area of the MTJ stack is eliminated, and electric current passes from the interconnect to the SOT layer by SOT-interconnect overlap. The devices and methods described herein reduce the formation of shunting current and enable the MTJ to self-align with the SOT layer in a single etching process.
    Type: Application
    Filed: August 8, 2023
    Publication date: November 30, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Minrui YU, Wenhui WANG, Jaesoo AHN, Jong Mun KIM, Sahil PATEL, Lin XUE, Chando PARK, Mahendra PAKALA, Chentsau Chris YING, Huixiong DAI, Christopher S. NGAI
  • Patent number: 11723283
    Abstract: Embodiments of the present disclosure generally include spin-orbit torque magnetoresistive random-access memory (SOT-MRAM) devices and methods of manufacture thereof. The SOT-MRAM devices described herein include an SOT layer laterally aligned with a magnetic tunnel junction (MTJ) stack and formed over a trench in an interconnect. Thus, the presence of the SOT layer outside the area of the MTJ stack is eliminated, and electric current passes from the interconnect to the SOT layer by SOT-interconnect overlap. The devices and methods described herein reduce the formation of shunting current and enable the MTJ to self-align with the SOT layer in a single etching process.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: August 8, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Minrui Yu, Wenhui Wang, Jaesoo Ahn, Jong Mun Kim, Sahil Patel, Lin Xue, Chando Park, Mahendra Pakala, Chentsau Chris Ying, Huixiong Dai, Christopher S. Ngai
  • Publication number: 20230229089
    Abstract: Methods and apparatuses for minimizing line edge/width roughness in lines formed by photolithography are provided. In one example, a method of processing a substrate includes applying a photoresist layer comprising a photoacid generator to on a multi-layer disposed on a substrate, wherein the multi-layer comprises an underlayer formed from an organic material, inorganic material, or a mixture of organic and inorganic materials, exposing a first portion of the photoresist layer unprotected by a photomask to a radiation light in a lithographic exposure process, and applying an electric field or a magnetic field to alter movement of photoacid generated from the photoacid generator substantially in a vertical direction.
    Type: Application
    Filed: March 23, 2023
    Publication date: July 20, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Huixiong DAI, Mangesh Ashok BANGAR, Srinivas D. NEMANI, Ellie Y. YIEH, Steven Hiloong WELCH, Christopher S. NGAI
  • Patent number: 11650506
    Abstract: Methods and apparatuses for minimizing line edge/width roughness in lines formed by photolithography are provided. In one example, a method of processing a substrate includes applying a photoresist layer comprising a photoacid generator to on a multi-layer disposed on a substrate, wherein the multi-layer comprises an underlayer formed from an organic material, inorganic material, or a mixture of organic and inorganic materials, exposing a first portion of the photoresist layer unprotected by a photomask to a radiation light in a lithographic exposure process, and applying an electric field or a magnetic field to alter movement of photoacid generated from the photoacid generator substantially in a vertical direction.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: May 16, 2023
    Assignee: Applied Materials Inc.
    Inventors: Huixiong Dai, Mangesh Bangar, Christopher S. Ngai, Srinivas D. Nemani, Ellie Y. Yieh, Steven Hiloong Welch
  • Publication number: 20220413387
    Abstract: A method for enhancing the depth of focus process window during a lithography process includes applying a photoresist layer comprising a photoacid generator on a material layer disposed on a substrate, exposing a first portion of the photoresist layer unprotected by a photomask to light radiation in a lithographic exposure process, providing a thermal energy to the photoresist layer in a post-exposure baking process, applying an electric field or a magnetic field while performing the post-exposure baking process, and dynamically changing a frequency of the electric field as generated while providing the thermal energy to the photoresist layer.
    Type: Application
    Filed: August 29, 2022
    Publication date: December 29, 2022
    Inventors: Huixiong DAI, Mangesh Ashok BANGAR, Srinivas D. NEMANI, Christopher S. NGAI, Ellie Y. YIEH
  • Publication number: 20220367285
    Abstract: Methods of forming and processing semiconductor devices which utilize a three-color hardmask process are described. Certain embodiments relate to the formation of self-aligned contacts for metal gate applications. More particularly, certain embodiments relate to the formation of self-aligned gate contacts through the selective deposition of a fill material.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 17, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Wenhui Wang, Huixiong Dai, Christopher S. Ngai
  • Patent number: 11437284
    Abstract: Methods of forming and processing semiconductor devices which utilize a three-color hardmask process are described. Certain embodiments relate to the formation of self-aligned contacts for metal gate applications. More particularly, certain embodiments relate to the formation of self-aligned gate contacts through the selective deposition of a fill material.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: September 6, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Wenhui Wang, Huixiong Dai, Christopher S. Ngai
  • Patent number: 11429026
    Abstract: A method for enhancing the depth of focus process window during a lithography process includes applying a photoresist layer comprising a photoacid generator on a material layer disposed on a substrate, exposing a first portion of the photoresist layer unprotected by a photomask to light radiation in a lithographic exposure process, providing a thermal energy to the photoresist layer in a post-exposure baking process, applying an electric field or a magnetic field while performing the post-exposure baking process, and dynamically changing a frequency of the electric field as generated while providing the thermal energy to the photoresist layer.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: August 30, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Huixiong Dai, Mangesh Ashok Bangar, Srinivas D. Nemani, Christopher S. Ngai, Ellie Y. Yieh
  • Publication number: 20220091513
    Abstract: A film structure for an electric field assisted bake process and methods of forming and implementing such a film structure are described herein. An example is a method for semiconductor processing. A photoresist is deposited on an underlayer disposed on a substrate. The underlayer includes carbon. The photoresist is exposed to a pattern of electromagnetic radiation. After exposing the photoresist, an electric field assisted bake is performed on the photoresist.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Inventors: Mangesh Ashok BANGAR, Huixiong DAI, Pinkesh Rohit SHAH, Srinivas D. NEMANI, Christopher S. NGAI, Ellie Y. YIEH
  • Publication number: 20210351342
    Abstract: Embodiments of the present disclosure generally include spin-orbit torque magnetoresistive random-access memory (SOT-MRAM) devices and methods of manufacture thereof. The SOT-MRAM devices described herein include an SOT layer laterally aligned with a magnetic tunnel junction (MTJ) stack and formed over a trench in an interconnect. Thus, the presence of the SOT layer outside the area of the MTJ stack is eliminated, and electric current passes from the interconnect to the SOT layer by SOT-interconnect overlap. The devices and methods described herein reduce the formation of shunting current and enable the MTJ to self-align with the SOT layer in a single etching process.
    Type: Application
    Filed: May 11, 2020
    Publication date: November 11, 2021
    Inventors: Minrui YUI, Wenhui WANG, Jaesoo AHN, Jong Mun KIM, Sahil PATEL, Lin XUE, Chando PARK, Mahendra PAKALA, Chentsau Chris YING, Huixiong DAI, Christopher S. Ngai
  • Publication number: 20210294216
    Abstract: A method for enhancing the depth of focus process window during a lithography process includes applying a photoresist layer comprising a photoacid generator on a material layer disposed on a substrate, exposing a first portion of the photoresist layer unprotected by a photomask to light radiation in a lithographic exposure process, providing a thermal energy to the photoresist layer in a post-exposure baking process, applying an electric field or a magnetic field while performing the post-exposure baking process, and dynamically changing a frequency of the electric field as generated while providing the thermal energy to the photoresist layer.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 23, 2021
    Inventors: Huixiong Dai, Mangesh Ashok Bangar, Srinivas D. Nemani, Christopher S. Ngai, Ellie Y. Yieh
  • Patent number: 10957590
    Abstract: Implementations of the present disclosure generally relate to the fabrication of integrated circuits, and more particularly, to methods for forming a layer. The layer may be a mask used in lithography process to pattern and form a trench. The mask is formed over a substrate having at least two distinct materials by a selective deposition process. The edges of the mask are disposed on an intermediate layer formed on at least one of the two distinct materials. The method includes removing the intermediate layer to form a gap between edges of the mask and the substrate and filling the gap with a different material than the mask or with the same material as the mask. By filling the gap with the same or different material as the mask, electrical paths are improved.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: March 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Wenhui Wang, Huixiong Dai, Christopher S. Ngai, Liqi Wu, Wenyu Zhang, Yongmei Chen, Hao Chen, Keith Tatseun Wong, Ke Chang
  • Patent number: 10930556
    Abstract: Methods of forming and processing semiconductor devices which utilize a three-color hardmask process are described. Certain embodiments relate to the formation of self-aligned contacts for metal gate applications. More particularly, certain embodiments relate to the formation of self-aligned gate contacts utilizing selective deposition of masks in a three-color process.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: February 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Wenhui Wang, Huixiong Dai, Christopher S. Ngai
  • Patent number: 10930555
    Abstract: Methods of forming and processing semiconductor devices which utilize a three-color process are described. Certain embodiments relate to the formation of self-aligned contacts for metal gate applications. More particularly, certain embodiments relate to the formation of self-aligned gate contacts utilizing selective deposition of overlapping masks in a three-color process.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: February 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Wenhui Wang, Huixiong Dai, Christopher S. Ngai
  • Publication number: 20200233307
    Abstract: Methods and apparatuses for minimizing line edge/width roughness in lines formed by photolithography are provided. In one example, a method of processing a substrate includes applying a photoresist layer comprising a photoacid generator to on a multi-layer disposed on a substrate, wherein the multi-layer comprises an underlayer formed from an organic material, inorganic material, or a mixture of organic and inorganic materials, exposing a first portion of the photoresist layer unprotected by a photomask to a radiation light in a lithographic exposure process, and applying an electric field or a magnetic field to alter movement of photoacid generated from the photoacid generator substantially in a vertical direction.
    Type: Application
    Filed: October 11, 2019
    Publication date: July 23, 2020
    Inventors: Huixiong DAI, Mangesh BANGAR, Christopher S. NGAI, Srinivas D. NEMANI, Ellie Y. YIEH, Steven Hiloong WELCH
  • Publication number: 20200161181
    Abstract: Implementations of the present disclosure generally relate to the fabrication of integrated circuits, and more particularly, to methods for forming a layer. The layer may be a mask used in lithography process to pattern and form a trench. The mask is formed over a substrate having at least two distinct materials by a selective deposition process. The edges of the mask are disposed on an intermediate layer formed on at least one of the two distinct materials. The method includes removing the intermediate layer to form a gap between edges of the mask and the substrate and filling the gap with a different material than the mask or with the same material as the mask. By filling the gap with the same or different material as the mask, electrical paths are improved.
    Type: Application
    Filed: October 30, 2019
    Publication date: May 21, 2020
    Inventors: Wenhui WANG, Huixiong DAI, Christopher S. NGAI, Liqi WU, Wenyu ZHANG, Yongmei CHEN, Hao CHEN, Keith Tatseun WONG, Ke CHANG
  • Publication number: 20200075422
    Abstract: Methods of forming and processing semiconductor devices which utilize a three-color hardmask process are described. Certain embodiments relate to the formation of self-aligned contacts for metal gate applications. More particularly, certain embodiments relate to the formation of self-aligned gate contacts through the selective deposition of a fill material.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 5, 2020
    Inventors: Wenhui Wang, Huixiong Dai, Christopher S. Ngai
  • Publication number: 20200075409
    Abstract: Methods of forming and processing semiconductor devices which utilize a three-color hardmask process are described. Certain embodiments relate to the formation of self-aligned contacts for metal gate applications. More particularly, certain embodiments relate to the formation of self-aligned gate contacts utilizing selective deposition of masks in a three-color process.
    Type: Application
    Filed: September 3, 2019
    Publication date: March 5, 2020
    Inventors: Wenhui Wang, Huixiong Dai, Christopher S. Ngai