Patents by Inventor Christopher S. Olsen

Christopher S. Olsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959169
    Abstract: A gas injector for processing a substrate includes a body having an inlet connectable to a gas source that is configured to provide a gas flow in a first direction into the inlet when processing a substrate on a substrate support disposed within a processing volume of a processing chamber, and an a gas injection channel formed in the body. The gas injection channel is in fluid communication with the inlet and configured to deliver the gas flow to an inlet of the processing chamber. The gas injection channel has a first interior surface and a second interior surface that are parallel to a second direction and a third direction. The second and third directions are misaligned with a center of the substrate, and are at an angle to the first direction towards a first edge of the substrate support.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: April 16, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Eric Kihara Shono, Vishwas Kumar Pandey, Christopher S. Olsen, Kartik Shah, Hansel Lo, Tobin Kaufman-Osborn, Rene George, Lara Hawrylchak, Erika Hansen
  • Patent number: 11948791
    Abstract: A substrate oxidation assembly includes: a chamber body defining a processing volume; a substrate support disposed in the processing volume; a plasma source coupled to the processing volume; a steam source fluidly coupled to the processing volume; and a substrate heater. A method of processing a semiconductor substrate includes: initiating conformal radical oxidation of high aspect ratio structures of the substrate comprising: heating the substrate; and exposing the substrate to steam; and conformally oxidizing the substrate. A semiconductor device includes a silicon and nitrogen containing layer; a feature formed in the silicon and nitrogen containing layer having an aspect ratio of at least 40:1; and an oxide layer on the face of the feature having a thickness in a bottom region of the silicon and nitrogen containing layer that is at least 95% of a thickness of the oxide layer in a top region.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: April 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Christopher S. Olsen, Taewan Kim
  • Publication number: 20230407471
    Abstract: The present disclosure generally provides methods of providing at least metastable radical molecular species and/or radical atomic species to a processing volume of a process chamber during an electronic device fabrication process, and apparatus related thereto. In one embodiment, the apparatus is a gas injection assembly disposed between a remote plasma source and a process chamber. The gas injection assembly includes a body, a dielectric liner disposed in the body that defines a gas mixing volume, a first flange to couple the gas injection assembly to a process chamber, and a second flange to couple the gas injection assembly to the remote plasma source. The gas injection assembly further includes one or more gas injection ports formed through the body and the liner.
    Type: Application
    Filed: June 2, 2023
    Publication date: December 21, 2023
    Inventors: Vishwas Kumar PANDEY, Eric Kihara SHONO, Kartik SHAH, Christopher S. OLSEN, Agus Sofian TJANDRA, Tobin KAUFMAN-OSBORN, Taewan KIM, Hansel LO
  • Patent number: 11761080
    Abstract: Aspects of the present disclosure generally relate to oscillating a boundary layer of a flow of process gas in methods and systems for processing substrates. In one aspect, one or more of a pressure, a gas flow rate, and/or a height of a substrate are oscillated during processing. In one implementation, a method of processing a substrate includes conducting a processing operation on the substrate in an interior volume of a processing chamber. The conducting the processing operation on the substrate includes moving a flow of one or more process gases over a surface of the substrate. The method also includes oscillating a boundary layer of the flow of one or more process gases while the flow of one or more process gases moves over the surface of the substrate.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: September 19, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Tsung-Han Yang, Christopher S. Olsen
  • Patent number: 11732355
    Abstract: The present disclosure generally provides methods of providing at least metastable radical molecular species and/or radical atomic species to a processing volume of a process chamber during an electronic device fabrication process, and apparatus related thereto. In one embodiment, the apparatus is a gas injection assembly disposed between a remote plasma source and a process chamber. The gas injection assembly includes a body, a dielectric liner disposed in the body that defines a gas mixing volume, a first flange to couple the gas injection assembly to a process chamber, and a second flange to couple the gas injection assembly to the remote plasma source. The gas injection assembly further includes one or more gas injection ports formed through the body and the liner.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: August 22, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Vishwas Kumar Pandey, Eric Kihara Shono, Kartik Shah, Christopher S. Olsen, Agus Sofian Tjandra, Tobin Kaufman-Osborn, Taewan Kim, Hansel Lo
  • Publication number: 20230223250
    Abstract: Methods of forming an oxide layer over a semiconductor substrate are provided. The method includes forming a first oxide containing portion of the oxide layer over a semiconductor substrate at a first growth rate by exposing the substrate to a first gas mixture having a first oxygen percentage at a first temperature. A second oxide containing portion is formed over the substrate at a second growth rate by exposing the substrate to a second gas mixture having a second oxygen percentage at a second temperature. A third oxide containing portion is formed over the substrate at a third growth rate by exposing the substrate to a third gas mixture having a third oxygen percentage at a third temperature. The first growth rate is slower than each subsequent growth rate and each growth rate subsequent to the second growth rate is within 50% of each other.
    Type: Application
    Filed: March 16, 2023
    Publication date: July 13, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Christopher S. OLSEN, Tobin KAUFMAN-OSBORN
  • Patent number: 11697875
    Abstract: The present disclosure generally provides methods of providing at least metastable radical molecular species and/or radical atomic species to a processing volume of a process chamber during an electronic device fabrication process, and apparatus related thereto. In one embodiment, the apparatus is a gas injection assembly disposed between a remote plasma source and a process chamber. The gas injection assembly includes a body, a dielectric liner disposed in the body that defines a gas mixing volume, a first flange to couple the gas injection assembly to a process chamber, and a second flange to couple the gas injection assembly to the remote plasma source. The gas injection assembly further includes one or more gas injection ports formed through the body and the liner.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: July 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Vishwas Kumar Pandey, Eric Kihara Shono, Kartik Shah, Christopher S. Olsen, Agus Sofian Tjandra, Tobin Kaufman-Osborn, Taewan Kim, Hansel Lo
  • Publication number: 20230207291
    Abstract: A method and apparatus for growing an oxide layer within a feature of a substrate is described herein. The method is suitable for use in semiconductor manufacturing. The oxide layer is formed by exposing a substrate to both a high pressure oxidant exposure and a lower pressure oxygen containing plasma exposure. The high pressure oxidant exposure is performed at a pressure of greater than 10 Torr, while the lower pressure oxygen containing plasma exposure is performed at a pressure of less than about 10 Torr. The features are high-aspect ratio trenches or holes within a stack of silicon oxide and silicon nitride layers.
    Type: Application
    Filed: April 8, 2022
    Publication date: June 29, 2023
    Inventors: Christopher S. OLSEN, Rene GEORGE, Tsung-Han YANG, David KNAPP, Lara HAWRYLCHAK
  • Publication number: 20230142526
    Abstract: Systems and method for predicting production decline for a target well include generating a static model and a decline model to generate a well production profile. The static model is generated with supervised machine learning using an input data set including historical production data, and calculates an initial resource production rate for the target well. The decline model is generated with a neural network using the input data and dynamic data (e.g., an input time interval and pressure data of the target well), and calculates a plurality of resource production rates for a plurality of time intervals. The system can perform multiple recursive calculations to calculate the plurality of resource production rates, generating the well production profile. For instance, the predicted resource production rate of a first time interval is used as one of inputs for predicting the resource production rate for a second, subsequent time interval.
    Type: Application
    Filed: November 8, 2022
    Publication date: May 11, 2023
    Inventors: Qing Chen, Xin Luo, Amir Nejad, Bo Hu, Christopher S. Olsen, Alexander J. Wagner, Iman Shahim, Curt E. Schneider, David D. Smith, Andy Flowers, Liu Chao Zhang
  • Publication number: 20230142230
    Abstract: Implementations described and claimed herein provide systems and methods for dynamic waterflood forecast modeling utilizing deep thinking computational techniques to reduce the processing time for generating the forecast model and improving the accuracy of resulting forecasts. In one particular implementation, a dataset of a field may be restructured into the spatio-temporal framework and data driven deep neural networks may be utilized to learn the nuances of data interactions to make more accurate forecasts for each well in the field. Further, the generated model may forecast a single time segment and build the complete forecast through recursive prediction instances. The temporal component of the restructured data may include all or a portion of the production history of the field divided into spaced time intervals. The spatial component of the restructure data may include, within each epoch, a computed or estimated spatial relationships of all existing wells.
    Type: Application
    Filed: November 8, 2022
    Publication date: May 11, 2023
    Inventors: Amir Nejad, Christopher S. Olsen, Bo Hu, Xin Luo, Qing Chen, Alexander J. Wagner, Liu Chao Zhang, Iman Shahim, Curt E. Schneider, David D. Smith, Andy Flowers, Richard Barclay
  • Publication number: 20230140905
    Abstract: Implementations described and claimed herein provide systems and methods for a framework to achieve completion optimization for waterflood field reservoirs. The proposed methodology leverages adequate data collection, preprocessing, subject matter expert knowledge-based feature engineering for geological, reservoir and completion inputs, and state-of-the-art machine-learning technologies, to indicate important production drivers, provide sensitivity analysis to quantify the impacts of the completion features, and ultimately achieve completion optimization. In this analytical framework, model-less feature ranking based on mutual information concept and model-dependent sensitivity analyses, in which a variety of machine-learning models are trained and validated, provides comprehensive multi-variant analyses that empower subject-matter experts to make a smarter decision in a timely manner.
    Type: Application
    Filed: November 8, 2022
    Publication date: May 11, 2023
    Inventors: Bo Hu, Qing Chen, Amir Nejad, Xin Luo, Christopher S. Olsen, Robert C. Burton, Liang Zhou, Xin Jun Gou, Liu Chao Zhang, Junjing Zhang, Iman Shahim, Curt E. Schneider, David D. Smith, Andy Flowers
  • Publication number: 20230133402
    Abstract: The present disclosure relates to a gas injection module for a process chamber. The process chamber includes a chamber body, a rotatable substrate support disposed inside a process volume of the chamber body, the substrate support configured to have a rotational spin rate; an inlet port formed in the chamber body, and an injection module coupled to the inlet port. The injection module includes a body, one or more gas inlets coupled to the body, and a plurality of nozzles formed in a supply face of the body, the supply face configured to face inside the chamber body, and gas exiting from the injection module is configured to have a flow rate; the process chamber also includes a controller configured to operate the process chamber such that the ratio of the flow rate to the rotational spin rate is between about 1/3 and 3.
    Type: Application
    Filed: October 18, 2022
    Publication date: May 4, 2023
    Inventors: Christopher S. OLSEN, Kartik Bhupendra SHAH, Chaitanya Anjaneyalu PRASAD, Vishwas Kumar PANDEY, AnilKumar BODEPUDI, Erika HANSEN
  • Patent number: 11615944
    Abstract: Embodiments of the present disclosure generally relate to a process chamber for conformal oxidation of high aspect ratio structures. The process chamber includes a liner assembly located in a first side of a chamber body and two pumping ports located in a substrate support portion adjacent a second side of the chamber body opposite the first side. The liner assembly includes a flow divider to direct fluid flow away from a center of a substrate disposed in a processing region of the process chamber. The liner assembly may be fabricated from quartz minimize interaction with process gases, such as radicals. The liner assembly is designed to reduce flow constriction of the radicals, leading to increased radical concentration and flux. The two pumping ports can be individually controlled to tune the flow of the radicals through the processing region of the process chamber.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: March 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Christopher S. Olsen, Eric Kihara Shono, Lara Hawrylchak, Agus Sofian Tjandra, Chaitanya A. Prasad, Sairaju Tallavarjula
  • Patent number: 11610776
    Abstract: Methods of forming an oxide layer over a semiconductor substrate are provided. The method includes forming a first oxide containing portion of the oxide layer over a semiconductor substrate at a first growth rate by exposing the substrate to a first gas mixture having a first oxygen percentage at a first temperature. A second oxide containing portion is formed over the substrate at a second growth rate by exposing the substrate to a second gas mixture having a second oxygen percentage at a second temperature. A third oxide containing portion is formed over the substrate at a third growth rate by exposing the substrate to a third gas mixture having a third oxygen percentage at a third temperature. The first growth rate is slower than each subsequent growth rate and each growth rate subsequent to the second growth rate is within 50% of each other.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: March 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Christopher S. Olsen, Tobin Kaufman-Osborn
  • Patent number: 11581408
    Abstract: Embodiments of the disclosure provide an improved apparatus and methods for nitridation of stacks of materials. In one embodiment, a method for processing a substrate in a processing region of a process chamber is provided. The method includes generating and flowing plasma species from a remote plasma source to a delivery member having a longitudinal passageway, flowing plasma species from the longitudinal passageway to an inlet port formed in a sidewall of the process chamber, wherein the plasma species are flowed at an angle into the inlet port to promote collision of ions or reaction of ions with electrons or charged particles in the plasma species such that ions are substantially eliminated from the plasma species before entering the processing region of the process chamber, and selectively incorporating atomic radicals from the plasma species in silicon or polysilicon regions of the substrate.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: February 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Matthew Scott Rogers, Roger Curtis, Lara Hawrylchak, Canfeng Lai, Bernard L. Hwang, Jeffrey A. Tobin, Christopher S. Olsen, Malcolm J. Bevan
  • Patent number: 11569245
    Abstract: A method for forming an oxide layer includes forming an interfacial layer on a substrate, forming an amorphous silicon layer on the interfacial layer, performing a direct oxidation process to selectively oxidize the formed amorphous silicon layer, and performing a thermal oxidation process to oxidize the formed amorphous silicon layer.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: January 31, 2023
    Assignee: Applied Materials, Inc.
    Inventor: Christopher S. Olsen
  • Publication number: 20230028054
    Abstract: A gas injector for processing a substrate includes a body having an inlet connectable to a gas source that is configured to provide a gas flow in a first direction into the inlet when processing a substrate on a substrate support disposed within a processing volume of a processing chamber, and an a gas injection channel formed in the body. The gas injection channel is in fluid communication with the inlet and configured to deliver the gas flow to an inlet of the processing chamber. The gas injection channel has a first interior surface and a second interior surface that are parallel to a second direction and a third direction. The second and third directions are misaligned with a center of the substrate, and are at an angle to the first direction towards a first edge of the substrate support.
    Type: Application
    Filed: September 30, 2022
    Publication date: January 26, 2023
    Inventors: Eric Kihara SHONO, Vishwas Kumar PANDEY, Christopher S. OLSEN, Kartik SHAH, Hansel LO, Tobin KAUFMAN-OSBORN, Rene GEORGE, Lara HAWRYLCHAK, Erika HANSEN
  • Publication number: 20220404515
    Abstract: Implementations described and claimed herein provide systems and methods for reservoir modeling. In one implementation, an input dataset comprising seismic data is received for a particular subsurface reservoir. Based on the input dataset and utilizing a deep learning computing technique, a plurality of trained reservoir models may be generated based on training data and/or validation information to model the particular subsurface reservoir. From the plurality of trained reservoir models, an optimized reservoir model may be selected based on a comparison of each of the plurality of reservoir models to a dataset of measured subsurface characteristics.
    Type: Application
    Filed: June 16, 2022
    Publication date: December 22, 2022
    Inventors: Christopher S. Olsen, Douglas Hakkarinen, Michal Brhlik, Upendra K. Tiwari, Timothy D. Osborne, Nickolas Paladino, Mark A. Wardrop, David W. Glover, Brock Johnson, Peter Bormann, Charles Ildstad
  • Patent number: 11529592
    Abstract: Gas injectors for providing uniform flow of fluid are provided herein. The gas injector includes a plenum body. The plenum body includes a recess, a protrusion adjacent to the recess and extending laterally away from the plenum body, and a plurality of nozzles extending laterally from an exterior surface of the plenum body. The plenum body has a plurality of holes in an exterior wall of the plenum body. Each nozzle is in fluid communication with an interior volume of the plenum body. By directing the flow of fluid, the gas injector provides for a uniform deposition.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: December 20, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Vishwas Kumar Pandey, Lara Hawrylchak, Eric Kihara Shono, Kartik Shah, Christopher S. Olsen, Sairaju Tallavarjula, Kailash Pradhan, Rene George, Johanes F. Swenberg, Stephen Moffatt
  • Patent number: D1023987
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: April 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Eric Kihara Shono, Vishwas Kumar Pandey, Christopher S. Olsen, Hansel Lo, Agus Sofian Tjandra, Taewan Kim, Tobin Kaufman-Osborn