Patents by Inventor Christopher Schade

Christopher Schade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230125609
    Abstract: The present disclosure provides compositions comprising iron, about 0.01 to about 0.4% w/w of manganese; about 1.3 to about 1.9% w/w of chromium; about 0.10% w/w or less of nickel; about 1.2 to about 1.7% w/w of molybdenum; about 0.01 to about 0.4% w/w of niobium; about 0.01 to about 0.4% w/w of vanadium; about 1.5 to about 2% w/w of silicon; and about 0.01 to about 0.20% w/w of carbon. The present disclosure also provides methods of preparing a metal powder, comprising atomizing a composition described herein and methods of preparing a metal object, comprising subjecting metal powder described herein to metal binder jetting.
    Type: Application
    Filed: April 21, 2022
    Publication date: April 27, 2023
    Inventors: CHRISTOPHER SCHADE, KERRI HORVAY, JON BAUMGARTNER
  • Publication number: 20220025492
    Abstract: The disclosure provides iron-based metallurgical compositions comprising iron and alloying elements of about (0.01) to about (0.65) wt %, based on the weight of the composition, of carbon; about (1) to about (2.0) wt %, based on the weight of the composition, of molybdenum; about (0.25) to about (2.0) wt %, based on the weight of the composition, of manganese; about (0.25) to about (2.0) wt %, based on the weight of the composition, of silicon; and about (0.05) to about (0.6) wt %, based on the weight of the composition, of vanadium. In some embodiments, the iron-based metallurgical composition is a powder metallurgical composition.
    Type: Application
    Filed: March 9, 2020
    Publication date: January 27, 2022
    Inventors: Christopher Schade, Kerri Horvay, Simon Hoeges, Philipp Gabriel
  • Publication number: 20160222310
    Abstract: The present invention concerns a compacting auxiliary for powder metallurgy and a sinterable mixture which contains the compacting auxiliary.
    Type: Application
    Filed: December 15, 2015
    Publication date: August 4, 2016
    Inventors: René Lindenau, Christopher Schade
  • Patent number: 7527667
    Abstract: Metallurgical powder compositions of the present invention include an iron based powder combined with a master alloy powder, as a mechanical property enhancing powder. The addition of master alloy powders has been found to enhance the mechanical properties of the final, sintered, compacted parts made from metallurgical powder compositions, especially at low sintering temperatures. Metallurgical powder compositions include at least about 80 weight percent of an iron-based metallurgical powder and from about 0.10 to about 20 weight percent of a master alloy powder. Master alloy powders include iron and from about 1.0 to about 40 weight percent chromium, and from about 1.0 to about 35 weight percent silicon, based on the weight of the master alloy powder.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: May 5, 2009
    Assignee: Hoeganaes Corporation
    Inventors: Bruce T. Lindsley, Patrick King, Christopher Schade
  • Publication number: 20070065328
    Abstract: Metallurgical powder compositions of the present invention include an iron based powder combined with a master alloy powder, as a mechanical property enhancing powder. The addition of master alloy powders has been found to enhance the mechanical properties of the final, sintered, compacted parts made from metallurgical powder compositions, especially at low sintering temperatures. Metallurgical powder compositions include at least about 80 weight percent of an iron-based metallurgical powder and from about 0.10 to about 20 weight percent of a master alloy powder. Master alloy powders include iron and from about 1.0 to about 40 weight percent chromium, and from about 1.0 to about 35 weight percent silicon, based on the weight of the master alloy powder.
    Type: Application
    Filed: November 10, 2006
    Publication date: March 22, 2007
    Applicant: Hoeganaes Corporation
    Inventors: Bruce Lindsley, Patrick King, Christopher Schade
  • Publication number: 20060285989
    Abstract: Provided are corrosion resistant metallurgical powder compositions, corrosion resistant compacted articles prepared from metallurgical powder compositions, and methods of preparing the same. Corrosion resistant metallurgical powder compositions include as a major component, an iron-based powder and, as a minor component, alloy additives that include chromium, and carbon. Upon compaction and sintering, the iron-based powder and alloy additives form a dual phase alloy system. The dual phase alloy system is denoted by an admixed martensite and ferrite microstructure. This unique microstructure results in beneficial physical properties, such as for example, high strength, hardness, and ductility, impact energy, and fatigue endurance, while maintaining resistance to corrosion.
    Type: Application
    Filed: March 21, 2006
    Publication date: December 21, 2006
    Applicant: Hoeganaes Corporation
    Inventor: Christopher Schade
  • Publication number: 20050274223
    Abstract: Metallurgical powder compositions are provided that include calcium aluminate additives, i.e., calcium aluminate or calcium aluminate containing powders, to enhance the machinability and durability of compacted and sintered parts made therefrom. The compositions generally contain a metal-based powder, such as for example, an iron-based or nickel-based powder, that constitutes the major portion of the composition. Calcium aluminate additives are combined with the metal based powder by, for example, admixing or bonding. Optionally, common alloying powders, lubricants, binding agents, and other powder metallurgy additives can be combined with the metallurgical powder composition. The metallurgical powder composition is used by compacting it in a die cavity to produce a “green” compact that may then be sintered, preferably at relatively high temperatures.
    Type: Application
    Filed: June 10, 2004
    Publication date: December 15, 2005
    Inventors: Christopher Schade, Denis Christopherson, Robert Causton
  • Publication number: 20050220657
    Abstract: Metallurgical powder compositions of the present invention include an iron based powder combined with a master alloy powder, as a mechanical property enhancing powder. The addition of master alloy powders has been found to enhance the mechanical properties of the final, sintered, compacted parts made from metallurgical powder compositions, especially at low sintering temperatures. Metallurgical powder compositions include at least about 80 weight percent of an iron-based metallurgical powder and from about 0.10 to about 20 weight percent of a master alloy powder. Master alloy powders include iron and from about 1.0 to about 40 weight percent chromium, and from about 1.0 to about 35 weight percent silicon, based on the weight of the master alloy powder.
    Type: Application
    Filed: April 6, 2004
    Publication date: October 6, 2005
    Inventors: Bruce Lindsley, Patrick King, Christopher Schade
  • Publication number: 20050112375
    Abstract: The metallurgical powder composition suspensions of the present invention include a magnetic powder having an outer oxide layer suspended in a carrier fluid. Magnetic powders include iron-based powders, such as for example, powders of iron pre-alloyed with other elements. Alloying materials include columbium, silicon, calcium, manganese, magnesium, carbon, boron, aluminum, titanium, molybdenum, chromium, copper, nickel, gold, vanadium, phosphorus, or combinations thereof. Carrier fluids include silicon-based fluids and/or oils, such as hydrocarbon oils. The outer oxide layer includes alloy materials that are reacted/complexed with oxygen. Magnetic powders exhibit low rates of oxidation over a broad temperature range. Articles incorporating metallurgical powder composition suspensions include dampeners having a chamber, a piston that reciprocates in the chamber, and a source of magnetism operatively connected to the chamber.
    Type: Application
    Filed: August 3, 2004
    Publication date: May 26, 2005
    Inventors: Christopher Schade, Jack Hamill