Patents by Inventor Christopher Sramek

Christopher Sramek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11911113
    Abstract: An electromagnetic (EM) system for tracking a surgical tool is provided. The system may comprise a plurality of subsets of field generator coils disposed along edge portions of a surgical bed. Each subset of field generator coils may be configured to generate a magnetic field within a control volume. The system may further comprise a position sensor disposed on a portion of the surgical tool. The position sensor may be configured to generate a sensor signal in response to the magnetic field when the position sensor is located inside the control volume. Additionally, the system may comprise an EM system controller configured to selectively activate one or more of the subsets of field generator coils based on the sensor signal.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: February 27, 2024
    Assignee: Auris Health, Inc.
    Inventors: Christopher Sramek, Gregory J. Kintz, David S. Mintz, Alan Yu
  • Patent number: 11832898
    Abstract: Certain aspects relate to a medical system that includes a robotically controllable field generator and an instrument guide. The instrument guide may guide a percutaneously insertable instrument along an insertion axis. The instrument guide may also be positioned on an electromagnetic (EM) field generator, where the EM field generator can generate an EM field. A first robotic arm may be coupled to the EM field generator and it may move the EM field generator and the instrument guide. The system then determines: an EM target positioned within a patient, and a registration that maps positions within an EM coordinate frame associated with the EM field to positions within a robotic coordinate frame. The system may also determine, based on the registration, a position of the EM target within the robotic coordinate frame. Based on the position of the EM target within the robotic coordinate frame, move the first robotic arm may move to align the insertion axis of the instrument guide with the EM target.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: December 5, 2023
    Assignee: Auris Health, Inc.
    Inventors: Christopher Sramek, Elif Ayvali, David Burdick Berman
  • Patent number: 11786316
    Abstract: Certain aspects relate to a medical system that includes a robotically controllable field generator and an instrument guide. The instrument guide may guide a percutaneously insertable instrument along an insertion axis. The instrument guide may also be positioned on an electromagnetic (EM) field generator, where the EM field generator can generate an EM field. A first robotic arm may be coupled to the EM field generator and it may move the EM field generator and the instrument guide. The system then determines: an EM target positioned within a patient, and a registration that maps positions within an EM coordinate frame associated with the EM field to positions within a robotic coordinate frame. The system may also determine, based on the registration, a position of the EM target within the robotic coordinate frame. Based on the position of the EM target within the robotic coordinate frame, move the first robotic arm may move to align the insertion axis of the instrument guide with the EM target.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: October 17, 2023
    Assignee: Auris Health, Inc.
    Inventors: Christopher Sramek, Elif Ayvali, David Burdick Berman
  • Publication number: 20220331015
    Abstract: Floating electromagnetic field generator systems and methods are provided. The system comprises a surgical bed portion. The system also comprises a brace component disposed within the surgical bed portion. Additionally, the system comprises a first arm that is attached to the brace component. The first arm is positioned adjacent to the surgical bed portion. Additionally, the first arm has at least one field generator coil embedded therein. The system also comprises a second arm that is attached to the brace component. The second arm is positioned adjacent to the surgical bed portion. Additionally, the second arm has at least one field generator coil embedded therein. The second arm is positioned parallel to the first arm.
    Type: Application
    Filed: May 6, 2022
    Publication date: October 20, 2022
    Inventors: Jason Lee, Christopher Sramek, Gregory J. Kintz, David S. Mintz, Alan Yu
  • Patent number: 11324554
    Abstract: Floating electromagnetic field generator systems and methods are provided. The system comprises a surgical bed portion. The system also comprises a brace component disposed within the surgical bed portion. Additionally, the system comprises a first arm that is attached to the brace component. The first arm is positioned adjacent to the surgical bed portion. Additionally, the first arm has at least one field generator coil embedded therein. The system also comprises a second arm that is attached to the brace component. The second arm is positioned adjacent to the surgical bed portion. Additionally, the second arm has at least one field generator coil embedded therein. The second arm is positioned parallel to the first arm.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: May 10, 2022
    Assignee: Auris Health, Inc.
    Inventors: Jason Lee, Christopher Sramek, Gregory J. Kintz, David S. Mintz, Alan Yu
  • Publication number: 20220061927
    Abstract: Certain aspects relate to systems with robotically controllable field generators and applications thereof. In one application, a robotic medical system, comprising a first robotic arm coupled to an electromagnetic (EM) field generator configured to generate an EM field, an EM sensor, and a processor. The processor may be configured to transmit a command to the first robotic arm to cause movement of the EM field generator along a robotic trajectory while the EM sensor remains at a location. An EM sensor trajectory of the EM sensor within the EM field corresponding to a period of time in which the EM field generator moved along the robotic trajectory may be detected. The robotic trajectory and the EM sensor trajectory may be analyzed to determine a difference between the robotic trajectory and the EM sensor trajectory; and EM distortion at the location may be detected comparing the difference and a threshold.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Inventors: Christopher SRAMEK, Elif AYVALI, David Burdick BERMAN
  • Publication number: 20220061926
    Abstract: Certain aspects relate to a medical system that includes a robotically controllable field generator and an instrument guide. The instrument guide may guide a percutaneously insertable instrument along an insertion axis. The instrument guide may also be positioned on an electromagnetic (EM) field generator, where the EM field generator can generate an EM field. A first robotic arm may be coupled to the EM field generator and it may move the EM field generator and the instrument guide. The system then determines: an EM target positioned within a patient, and a registration that maps positions within an EM coordinate frame associated with the EM field to positions within a robotic coordinate frame. The system may also determine, based on the registration, a position of the EM target within the robotic coordinate frame. Based on the position of the EM target within the robotic coordinate frame, move the first robotic arm may move to align the insertion axis of the instrument guide with the EM target.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Inventors: Christopher SRAMEK, Elif AYVALI, David Burdick BERMAN
  • Publication number: 20220061924
    Abstract: Certain aspects relate to systems with robotically controllable field generators and applications thereof. For example, a robotic medical system may include a first robotic arm that is configured to couple to an electromagnetic (EM) field generator. The first robotic arm be capable of moving the EM field generator. The robotic medical system may also include one or more processors. The processors may determine an EM position of an EM sensor within the EM field in an EM coordinate frame associated with the EM field generator. The processors also determine a position of the EM field generator in a robotic coordinate frame associated with the first robotic arm. The processors determine a registration between the EM coordinate frame and the robotic coordinate frame based on the position of the EM field generator. Based on the registration, the processors may determine a position of the EM sensor in the robotic coordinate frame.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Inventors: Christopher SRAMEK, Elif AYVALI, David Burdick BERMAN
  • Publication number: 20220061925
    Abstract: Certain aspects relate to systems with robotically controllable field generators and applications thereof. A robotic medical system may include a robotic arm coupled to an electromagnetic (EM) field generator configured to generate an EM field, and the first robotic arm may be configured to move the EM field generator. The medical system may also include a medical instrument configured for insertion into a patient. The medical instrument may comprise an EM sensor and one or more processors. The processors may: determine a position of the EM sensor within the EM field; and adjust a position of the EM field generator by commanding movement of the first robotic arm based on the determined position of the EM sensor.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Inventors: Christopher SRAMEK, Elif AYVALI, David Burdick BERMAN
  • Publication number: 20210153954
    Abstract: An electromagnetic (EM) system for tracking a surgical tool is provided. The system may comprise a plurality of subsets of field generator coils disposed along edge portions of a surgical bed. Each subset of field generator coils may be configured to generate a magnetic field within a control volume. The system may further comprise a position sensor disposed on a portion of the surgical tool. The position sensor may be configured to generate a sensor signal in response to the magnetic field when the position sensor is located inside the control volume. Additionally, the system may comprise an EM system controller configured to selectively activate one or more of the subsets of field generator coils based on the sensor signal.
    Type: Application
    Filed: January 29, 2021
    Publication date: May 27, 2021
    Inventors: Christopher Sramek, Gregory J. Kintz, David S. Mintz, Alan Yu
  • Publication number: 20210145305
    Abstract: A surgical tool having an electromagnetic (EM) sensor component is provided. The surgical tool has a flexible shaft portion. Additionally, the surgical tool has a rigid portion attached to the flexible shaft portion. The rigid portion comprises at least one EM sensor within the rigid portion. The at least one EM sensor comprises an extended core portion surrounded by a coil. Additionally, the at least one EM sensor generates a change in voltage when exposed to an electromagnetic field.
    Type: Application
    Filed: January 29, 2021
    Publication date: May 20, 2021
    Inventors: Christopher Sramek, Gregory J. Kintz, Enrique Romo, Nahid Sidki, Alan Yu
  • Patent number: 10932861
    Abstract: An electromagnetic (EM) system for tracking a surgical tool is provided. The system may comprise a plurality of subsets of field generator coils disposed along edge portions of a surgical bed. Each subset of field generator coils may be configured to generate a magnetic field within a control volume. The system may further comprise a position sensor disposed on a portion of the surgical tool. The position sensor may be configured to generate a sensor signal in response to the magnetic field when the position sensor is located inside the control volume. Additionally, the system may comprise an EM system controller configured to selectively activate one or more of the subsets of field generator coils based on the sensor signal.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: March 2, 2021
    Assignee: Auris Health, Inc.
    Inventors: Christopher Sramek, Gregory J. Kintz, David S. Mintz, Alan Yu
  • Patent number: 10932691
    Abstract: A surgical tool having an electromagnetic (EM) sensor component is provided. The surgical tool has a flexible shaft portion. Additionally, the surgical tool has a rigid portion attached to the flexible shaft portion. The rigid portion comprises at least one EM sensor within the rigid portion. The at least one EM sensor comprises an extended core portion surrounded by a coil. Additionally, the at least one EM sensor generates a change in voltage when exposed to an electromagnetic field.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: March 2, 2021
    Assignee: Auris Health, Inc.
    Inventors: Christopher Sramek, Gregory J. Kintz, Enrique Romo, Nahid Sidki, Alan Yu
  • Publication number: 20170290631
    Abstract: Floating electromagnetic field generator systems and methods are provided. The system comprises a surgical bed portion. The system also comprises a brace component disposed within the surgical bed portion. Additionally, the system comprises a first arm that is attached to the brace component. The first arm is positioned adjacent to the surgical bed portion. Additionally, the first arm has at least one field generator coil embedded therein. The system also comprises a second arm that is attached to the brace component. The second arm is positioned adjacent to the surgical bed portion. Additionally, the second arm has at least one field generator coil embedded therein. The second arm is positioned parallel to the first arm.
    Type: Application
    Filed: February 21, 2017
    Publication date: October 12, 2017
    Inventors: Jason Lee, Christopher Sramek, Gregory J. Kintz, David S. Mintz, Alan Yu
  • Publication number: 20170209073
    Abstract: A surgical tool having an electromagnetic (EM) sensor component is provided. The surgical tool has a flexible shaft portion. Additionally, the surgical tool has a rigid portion attached to the flexible shaft portion. The rigid portion comprises at least one EM sensor within the rigid portion. The at least one EM sensor comprises an extended core portion surrounded by a coil. Additionally, the at least one EM sensor generates a change in voltage when exposed to an electromagnetic field.
    Type: Application
    Filed: January 20, 2017
    Publication date: July 27, 2017
    Inventors: Christopher Sramek, Gregory J. Kintz, Enrique Romo, Nahid Sidki, Alan Yu
  • Publication number: 20170202627
    Abstract: An electromagnetic (EM) system for tracking a surgical tool is provided. The system may comprise a plurality of subsets of field generator coils disposed along edge portions of a surgical bed. Each subset of field generator coils may be configured to generate a magnetic field within a control volume. The system may further comprise a position sensor disposed on a portion of the surgical tool. The position sensor may be configured to generate a sensor signal in response to the magnetic field when the position sensor is located inside the control volume. Additionally, the system may comprise an EM system controller configured to selectively activate one or more of the subsets of field generator coils based on the sensor signal.
    Type: Application
    Filed: January 13, 2017
    Publication date: July 20, 2017
    Inventors: Christopher Sramek, Gregory J. Kintz, David S. Mintz, Alan Yu