Patents by Inventor Christopher T. PHARE

Christopher T. PHARE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220011643
    Abstract: In an optical emitter device, when point emitters are placed on the focal plane of a lens system, each individual point emitter will point to a specific free space angle depending on the position of the point emitter relative to the longitudinal central axis of the lens system. The plurality of point emitters are arranged in an array comprising a plurality of rows of point emitters and a plurality of columns of point emitters. Each of the plurality of point emitters comprises a grating coupler configured to emit a respective beam of light in a respective transmission direction. Each grating coupler comprises a first plurality of periodically spaced optical waveguide grating structures, at least some of the optical waveguide grating structures including a notch, whereby a first portion of each optical waveguide grating structure extends a different height than a second portion.
    Type: Application
    Filed: July 12, 2021
    Publication date: January 13, 2022
    Inventors: Sajan SHRESTHA, Christopher T. PHARE, Lawrence Dah Ching TZUANG
  • Publication number: 20220011406
    Abstract: In an optical emitter device, when point emitters are placed on the focal plane of a lens system, each individual point emitter will point to a specific free space angle depending on the position of the point emitter relative to the longitudinal central axis of the lens system. Point emitters comprising end-fire tapers combined with both a turning mirror and a micro-lens provide improved performance, because, unlike grating couplers, end-fire tapers enable uniform broadband operation with all possible polarization states. A turning mirror may be added to direct the light emission from the end-fire tapers to vertically upwards, which enables both a two-dimensional point emitter array and a more streamlined assembly process.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 13, 2022
    Inventors: Sajan SHRESTHA, Christopher T. PHARE, Lawrence Dah Ching TZUANG
  • Patent number: 11115131
    Abstract: A cryogenic optoelectronic data link, comprising a sending module operating at a cryogenic temperature less than 100 K. An ultrasensitive electro-optic modulator, sensitive to input voltages of less than 10 mV, may include at least one optically active layer of graphene, which may be part of a microscale resonator, which in turn may be integrated with an optical waveguide or an optical fiber. The optoelectronic data link enables optical output of weak electrical signals from superconducting or other cryogenic electronic devices in either digital or analog form. The modulator may be integrated on the same chip as the cryogenic electrical devices. A plurality of cryogenic electrical devices may generate a plurality of electrical signals, each coupled to its own modulator. The plurality of modulators may be resonant at different frequencies, and coupled to a common optical output line to transmit a combined wavelength-division-multiplexed (WDM) optical signal.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: September 7, 2021
    Assignee: SeeQC Inc.
    Inventors: Igor V. Vernik, Oleg A. Mukhanov, Alan M. Kadin, Christopher T. Phare, Michal Lipson, Keren Bergman
  • Patent number: 10983273
    Abstract: The optical phased array may use a grating based emitter in order to emit light out of the plane of a PIC chip from an array of output waveguides. A longer grating allows for a larger aperture in the output waveguide dimension and allows for a small spot size. However, even for the relatively thick grating layers available in production foundries, the gratings still cause light to decay within less than 0.5 mm. To reduce the grating strength, some or all of the diffraction gratings may only be provided between the output waveguides, e.g. over trenches between the output waveguides, but not over top the output waveguides, whereby the periodicity only interacts with the weaker evanescent tails of the confined mode instead of the entire cross section of the output waveguides. By forming sufficiently narrow slots in the grating layer only down to the upper cladding layer, the diffraction gratings may be made extremely weak.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: April 20, 2021
    Assignee: Voyant Photonics, Inc.
    Inventor: Christopher T. Phare
  • Publication number: 20200363661
    Abstract: Disclosed herein are systems and architecture for thermal waveguide-based phase shifters which improve thermal efficiency by having multi-pass waveguides arranged under the heating element in a serpentine fashion, with the waveguides having mismatched propagation constants. The combination allows for an increase in phase shift without increasing the length or the power consumption of the resistive heating element by increasing the total length of waveguide being heated by a singular heating element.
    Type: Application
    Filed: March 20, 2020
    Publication date: November 19, 2020
    Inventors: Christopher T. Phare, Stephen A. Miller, Viraj Shah
  • Publication number: 20200158956
    Abstract: A millimeter scale weak grating coupler comprising a silicon waveguide having bars of overlay material of length (a) disposed periodically at a period (?) adjacent the silicon waveguide whereby a uniform grating output is achieved.
    Type: Application
    Filed: June 26, 2018
    Publication date: May 21, 2020
    Inventors: Michal LIPSON, Aseema MOHANTY, Christopher T. PHARE, Moshe ZADKA, Samantha P. ROBERTS, You-Chia CHANG