Patents by Inventor Christopher W. Widenhouse
Christopher W. Widenhouse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240074752Abstract: A tissue thickness compensator may generally comprise a first layer comprising a first biocompatible material sealingly enclosed in a water impermeable material and a second layer comprising a second biocompatible material comprising at least one encapsulation, wherein the first biocompatible material expands when contacted with a fluid. The tissue thickness compensator may comprise a haemostatic agent, an anti-inflammatory agent, an antibiotic agent, anti-microbial agent, an anti-adhesion agent, an anti-coagulant agent, a medicament, and/or pharmaceutically active agent. The encapsulation may comprise a biodegradable material to degrade in vivo and/or in situ. The tissue thickness compensator may comprise a hydrogel. The reaction product may comprise a fluid-swellable composition. Articles of manufacture comprising the tissue thickness compensator and methods of making and using the tissue thickness compensator are also described.Type: ApplicationFiled: November 8, 2023Publication date: March 7, 2024Inventors: Chester O. Baxter, III, Frederick E. Shelton, IV, Charles J. Scheib, Christopher W. Widenhouse, William B. Weisenburgh, II
-
Publication number: 20240032922Abstract: A staple cartridge assembly comprising a tissue thickness compensator is disclosed. The tissue thickness compensator comprises a first fibrous, woven material and a second fibrous, woven material. The first fibrous, woven material comprises a density which is different than the density of the second fibrous, woven material. The tissue thickness compensator is configured to expand upon contact with a fluid in order to apply a compressive force to tissue captured within staples.Type: ApplicationFiled: October 3, 2023Publication date: February 1, 2024Inventors: Chester O. Baxter, III, Frederick E. Shelton, IV, Charles J. Scheib, Christopher W. Widenhouse, William B. Weisenburgh, II, John L. Stammen, Mark H. Ransick, Stephanie A. Mutchler, Gary W. Knight, Michael S. Cropper, Sean P. Conlon, Jeffrey S. Swayze
-
Patent number: 11857187Abstract: A tissue thickness compensator may generally comprise a first layer comprising a first biocompatible material sealingly enclosed in a water impermeable material and a second layer comprising a second biocompatible material comprising at least one encapsulation, wherein the first biocompatible material expands when contacted with a fluid. The tissue thickness compensator may comprise a haemostatic agent, an anti-inflammatory agent, an antibiotic agent, anti-microbial agent, an anti-adhesion agent, an anti-coagulant agent, a medicament, and/or pharmaceutically active agent. The encapsulation may comprise a biodegradable material to degrade in vivo and/or in situ. The tissue thickness compensator may comprise a hydrogel. The reaction product may comprise a fluid-swellable composition. Articles of manufacture comprising the tissue thickness compensator and methods of making and using the tissue thickness compensator are also described.Type: GrantFiled: March 10, 2021Date of Patent: January 2, 2024Assignee: Cilag GmbH InternationalInventors: Chester O. Baxter, III, Frederick E. Shelton, IV, Charles J. Scheib, Christopher W. Widenhouse, William B. Weisenburgh, II, Samuel P. Tidwell, Stephanie A. Mutchler, Gary W. Knight
-
Patent number: 11812965Abstract: A staple cartridge assembly comprising a tissue thickness compensator is disclosed. The tissue thickness compensator comprises a first fibrous, woven material and a second fibrous, woven material. The first fibrous, woven material comprises a density which is different than the density of the second fibrous, woven material. The tissue thickness compensator is configured to expand upon contact with a fluid in order to apply a compressive force to tissue captured within staples.Type: GrantFiled: June 7, 2019Date of Patent: November 14, 2023Assignee: Cilag GmbH InternationalInventors: Chester O. Baxter, III, Frederick E. Shelton, IV, Charles J. Scheib, Christopher W. Widenhouse, William B. Weisenburgh, II, John L. Stammen, Mark H. Ransick, Stephanie A. Mutchler, Gary W. Knight, Michael S. Cropper, Sean P. Conlon, Jeffrey S. Swayze
-
Patent number: 11801071Abstract: Various devices are provided for allowing multiple surgical instruments to be inserted through a single surgical access device at variable angles of insertion, allowing for ease of manipulation within a patient's body while maintaining insufflation. Safety shields and release mechanisms are also provided for use with various surgical access devices.Type: GrantFiled: February 12, 2020Date of Patent: October 31, 2023Assignee: Cilag GmbH InternationalInventors: Christopher W. Widenhouse, William B. Weisenburgh, II, Frederick E. Shelton, IV, David K. Norvell, Robert P. Gill, James W. Voegele, Michael A. Murray, Christopher J. Hess, Michael S. Cropper
-
Patent number: 11759205Abstract: A surgical stapler end effector comprises a staple cartridge, an anvil, and a buttress assembly. The staple cartridge comprises a plurality of staples and a deck. The staple cartridge is operable to drive the staples through the deck. The anvil is movable from an open position toward the staple cartridge to reach a closed position. The anvil includes an underside having staple forming surface configured to receive staples driven through the deck. The buttress assembly comprises a buttress body and an adhesive material. The adhesive material comprises a polymer. The polymer is bioabsorbable. The polymer has an inherent viscosity at or below 3.0 dL/g.Type: GrantFiled: November 3, 2020Date of Patent: September 19, 2023Assignee: Cilag GmbH InternationalInventors: Frederick E. Shelton, IV, Rao S. Bezwada, Christopher W. Widenhouse
-
Publication number: 20220175363Abstract: Methods and devices are provided for providing surgical access into a body cavity. In one embodiment, a surgical access device is provided that includes a housing coupled to a retractor. The housing can be have one or more movable sealing ports for receiving surgical instruments. Each movable sealing port can include one or more sealing elements therein for sealing the port and/or forming a seal around a surgical instrument disposed therethrough. Each movable sealing port can be rotatable relative to the housing and each sealing element can be rotatable relative to the housing along a predetermined orbital path.Type: ApplicationFiled: January 26, 2022Publication date: June 9, 2022Inventors: Christopher W. Widenhouse, Frederick E. Shelton, IV
-
Publication number: 20220096124Abstract: Various devices and methods are provided with respect to inserting multiple surgical instruments through a single surgical access device. A medical device including a flexible tissue retractor a releasable insert having multiple instrument openings, and a member such as a sleeve is disclosed. The insert can be in the form of an insert assembly including multiple components. The sleeve can support the insert with respect to the retractor such that the insert and sleeve can be removed together with the retractor remaining in the incision. A method of using the insert is also described.Type: ApplicationFiled: December 10, 2021Publication date: March 31, 2022Inventors: Frederick E. Shelton, IV, Christopher W. Widenhouse
-
Patent number: 11266394Abstract: Methods and devices are provided for providing surgical access into a body cavity. In one embodiment, a surgical access device is provided that includes a housing coupled to a retractor. The housing can be have one or more movable sealing ports for receiving surgical instruments. Each movable sealing port can include one or more sealing elements therein for sealing the port and/or forming a seal around a surgical instrument disposed therethrough. Each movable sealing port can be rotatable relative to the housing and each sealing element can be rotatable relative to the housing along a predetermined orbital path.Type: GrantFiled: October 25, 2019Date of Patent: March 8, 2022Assignee: CILAG GMBH INTERNATIONALInventors: Christopher W. Widenhouse, Frederick E. Shelton, IV
-
Patent number: 11224460Abstract: Various devices and methods are provided with respect to inserting multiple surgical instruments through a single surgical access device. A medical device including a flexible tissue retractor a releasable insert having multiple instrument openings, and a member such as a sleeve is disclosed. The insert can be in the form of an insert assembly including multiple components. The sleeve can support the insert with respect to the retractor such that the insert and sleeve can be removed together with the retractor remaining in the incision. A method of using the insert is also described.Type: GrantFiled: August 9, 2018Date of Patent: January 18, 2022Assignee: Cilag GmbH InternationalInventors: Frederick E. Shelton, IV, Christopher W. Widenhouse
-
Publication number: 20210290231Abstract: A tissue thickness compensator may generally comprise a first layer comprising a first biocompatible material sealingly enclosed in a water impermeable material and a second layer comprising a second biocompatible material comprising at least one encapsulation, wherein the first biocompatible material expands when contacted with a fluid. The tissue thickness compensator may comprise a haemostatic agent, an anti-inflammatory agent, an antibiotic agent, anti-microbial agent, an anti-adhesion agent, an anti-coagulant agent, a medicament, and/or pharmaceutically active agent. The encapsulation may comprise a biodegradable material to degrade in vivo and/or in situ. The tissue thickness compensator may comprise a hydrogel. The reaction product may comprise a fluid-swellable composition. Articles of manufacture comprising the tissue thickness compensator and methods of making and using the tissue thickness compensator are also described.Type: ApplicationFiled: March 10, 2021Publication date: September 23, 2021Inventors: Chester O. Baxter, III, Frederick E. Shelton, IV, Charles J. Scheib, Christopher W. Widenhouse, William B. Weisenburgh, II
-
Patent number: 11058425Abstract: A staple cartridge is disclosed. The staple cartridge can include a cartridge body, a plurality of staples, and an implantable layer. The implantable layer can include a piece of lyophilized foam and a plurality of fibers at least partially embedded in the piece of lyophilized foam. The implantable layer can further include a plurality of pores defined in piece of lyophilized foam, and a plurality of pockets, wherein a pocket at least partially surrounds a fiber. A method of forming an implantable layer for use with a surgical staple is also disclosed. The method can comprise obtaining a mold comprising a cavity, placing a plurality of fibers in the cavity of the mold, dispensing a solution into the cavity around the fibers, and lyophilizing the solution in the cavity.Type: GrantFiled: August 17, 2015Date of Patent: July 13, 2021Assignee: Ethicon LLCInventors: Christopher W. Widenhouse, Michael J. Miller, Mark D. Timmer, Taylor W. Aronhalt, Trevor J. Barton, Emily A. Schellin, Michael J. Vendely, Lauren S. Weaner, Courtney J. Sikes
-
Publication number: 20210113206Abstract: A surgical stapler end effector comprises a staple cartridge, an anvil, and a buttress assembly. The staple cartridge comprises a plurality of staples and a deck. The staple cartridge is operable to drive the staples through the deck. The anvil is movable from an open position toward the staple cartridge to reach a closed position. The anvil includes an underside having staple forming surface configured to receive staples driven through the deck. The buttress assembly comprises a buttress body and an adhesive material. The adhesive material comprises a polymer. The polymer is bioabsorbable. The polymer has an inherent viscosity at or below 3.0 dL/g.Type: ApplicationFiled: November 3, 2020Publication date: April 22, 2021Inventors: Frederick E. Shelton, IV, Rao S. Bezwada, Christopher W. Widenhouse
-
Patent number: 10945731Abstract: A tissue thickness compensator may generally comprise a first layer comprising a first biocompatible material sealingly enclosed in a water impermeable material and a second layer comprising a second biocompatible material comprising at least one encapsulation, wherein the first biocompatible material expands when contacted with a fluid. The tissue thickness compensator may comprise a haemostatic agent, an anti-inflammatory agent, an antibiotic agent, anti-microbial agent, an anti-adhesion agent, an anti-coagulant agent, a medicament, and/or pharmaceutically active agent. The encapsulation may comprise a biodegradable material to degrade in vivo and/or in situ. The tissue thickness compensator may comprise a hydrogel. The reaction product may comprise a fluid-swellable composition. Articles of manufacture comprising the tissue thickness compensator and methods of making and using the tissue thickness compensator are also described.Type: GrantFiled: November 12, 2018Date of Patent: March 16, 2021Assignee: Ethicon LLCInventors: Chester O. Baxter, III, Frederick E. Shelton, IV, Charles J. Scheib, Christopher W. Widenhouse, William B. Weisenburgh, II
-
Patent number: 10863984Abstract: A surgical stapler end effector comprises a staple cartridge, an anvil, and a buttress assembly. The staple cartridge comprises a plurality of staples and a deck. The staple cartridge is operable to drive the staples through the deck. The anvil is movable from an open position toward the staple cartridge to reach a closed position. The anvil includes an underside having staple forming surface configured to receive staples driven through the deck. The buttress assembly comprises a buttress body and an adhesive material. The adhesive material comprises a polymer. The polymer is bioabsorbable. The polymer has an inherent viscosity at or below 3.0 dL/g.Type: GrantFiled: March 25, 2015Date of Patent: December 15, 2020Assignee: Ethicon LLCInventors: Frederick E. Shelton, IV, Rao S. Bezwada, Christopher W. Widenhouse
-
Patent number: 10835249Abstract: A staple cartridge is disclosed. The staple cartridge can include a cartridge body, a plurality of staples, and an implantable layer. The implantable layer can include an inner portion, an outer portion positioned at least partially around the inner portion, and a plurality of passages formed through the outer portion toward the inner portion. The implantable layer can be porous. An implantable layer can include an outer portion including a plurality of fibers. A method of forming an implantable layer for use with a surgical stapler is also disclosed. The method can include forming at least one passage through an outer surface toward an inner portion of the implantable layer.Type: GrantFiled: August 17, 2015Date of Patent: November 17, 2020Assignee: Ethicon LLCInventors: Emily A. Schellin, Taylor W. Aronhalt, Trevor J. Barton, Michael J. Miller, Michael J. Vendely, Lauren S. Weaner, Christopher W. Widenhouse, Mark S. Zeiner, Christian T. Hansen, Frederick E. Shelton, IV
-
Publication number: 20200179003Abstract: Various devices are provided for allowing multiple surgical instruments to be inserted through a single surgical access device at variable angles of insertion, allowing for ease of manipulation within a patient's body while maintaining insufflation. Safety shields and release mechanisms are also provided for use with various surgical access devices.Type: ApplicationFiled: February 12, 2020Publication date: June 11, 2020Inventors: Christopher W. Widenhouse, William B. Weisenburgh, II, Frederick E. Shelton, IV, David K. Norvell, Robert P. Gill, James W. Voegele, Michael A. Murray, Christopher J. Hess, Michael S. Cropper
-
Patent number: 10588661Abstract: Various devices are provided for allowing multiple surgical instruments to be inserted through a single surgical access device at variable angles of insertion, allowing for ease of manipulation within a patient's body while maintaining insufflation. Safety shields and release mechanisms are also provided for use with various surgical access devices.Type: GrantFiled: June 7, 2018Date of Patent: March 17, 2020Assignee: Ethicon LLCInventors: Christopher W. Widenhouse, William B. Weisenburgh, II, Frederick E. Shelton, IV, David K. Norvell, Robert P. Gill, James W. Voegele, Michael A. Murray, Christopher J. Hess, Michael S. Cropper
-
Publication number: 20200060672Abstract: Methods and devices are provided for providing surgical access into a body cavity. In one embodiment, a surgical access device is provided that includes a housing coupled to a retractor. The housing can be have one or more movable sealing ports for receiving surgical instruments. Each movable sealing port can include one or more sealing elements therein for sealing the port and/or forming a seal around a surgical instrument disposed therethrough. Each movable sealing port can be rotatable relative to the housing and each sealing element can be rotatable relative to the housing along a predetermined orbital path.Type: ApplicationFiled: October 25, 2019Publication date: February 27, 2020Applicant: Ethicon LLCInventors: Christopher W. Widenhouse, Frederick E. Shelton, IV
-
Patent number: 10470751Abstract: Methods and devices are provided for providing surgical access into a body cavity. In one embodiment, a surgical access device is provided that includes a housing coupled to a retractor. The housing can be have one or more movable sealing ports for receiving surgical instruments. Each movable sealing port can include one or more sealing elements therein for sealing the port and/or forming a seal around a surgical instrument disposed therethrough. Each movable sealing port can be rotatable relative to the housing and each sealing element can be rotatable relative to the housing along a predetermined orbital path.Type: GrantFiled: July 5, 2018Date of Patent: November 12, 2019Assignee: Ethicon LLCInventors: Christopher W. Widenhouse, Frederick E. Shelton, IV