Patents by Inventor Christopher Wayne Jones

Christopher Wayne Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11937889
    Abstract: A robotic system and methods for performing spine surgery are disclosed. The system comprises a robotic manipulator with a tool to hold a screw and to rotate the screw about a rotational axis. The screw is self-tapping and has a known thread geometry that is stored by one or more controllers. A navigation system tracks a position of a target anatomy. Movement of the robotic manipulator is controlled to maintain the rotational axis of the surgical tool along a planned trajectory with respect to the target anatomy based on the tracked position of the target anatomy. In autonomous or manual modes of operation, the rotational rate of the screw about the rotational axis and/or an advancement rate of the screw linearly along the planned trajectory is controlled to be proportional to the known thread geometry stored in the memory.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: March 26, 2024
    Assignee: MAKO Surgical Corp.
    Inventors: Hyosig Kang, Jienan Ding, David Gene Bowling, Christopher Wayne Jones, Greg McEwan, Lucas Gsellman
  • Publication number: 20220125531
    Abstract: An assembly for a surgical arm includes a tool to position a prosthesis and an end effector. The tool has a tool shaft extending along a tool axis and a tool engagement surface. The end effector has a mount attachable to the surgical arm, a body portion extending from the mount, a distal end, and a guide portion is at the distal end of the body portion to receive the tool. The guide portion has a pair of arms, each arm extending to an arm end and the arm ends are spaced apart from one another to provide an opening between the arm ends. A channel is formed between the arms and extends along a guide axis. The arms define an arc-shaped guide engagement surface to enable contact with the tool engagement surface for facilitating alignment of the tool axis and the guide axis.
    Type: Application
    Filed: January 4, 2022
    Publication date: April 28, 2022
    Applicant: MAKO Surgical Corp.
    Inventors: Paul Shiels, David Gene Bowling, Larry Douglas O'Cull, Patrick C. Kelly, Christopher Wayne Jones
  • Publication number: 20210275260
    Abstract: A robotic system and methods for performing spine surgery are disclosed. The system comprises a robotic manipulator with a tool to hold a screw and to rotate the screw about a rotational axis. The screw is self-tapping and has a known thread geometry that is stored by one or more controllers. A navigation system tracks a position of a target anatomy. Movement of the robotic manipulator is controlled to maintain the rotational axis of the surgical tool along a planned trajectory with respect to the target anatomy based on the tracked position of the target anatomy. In autonomous or manual modes of operation, the rotational rate of the screw about the rotational axis and/or an advancement rate of the screw linearly along the planned trajectory is controlled to be proportional to the known thread geometry stored in the memory.
    Type: Application
    Filed: May 6, 2021
    Publication date: September 9, 2021
    Applicant: MAKO Surgical Corp.
    Inventors: Hyosig Kang, Jienan Ding, David Gene Bowling, Christopher Wayne Jones, Greg McEwan, Lucas Gsellman
  • Patent number: 11033341
    Abstract: A robotic system and methods for performing spine surgery are disclosed. The system comprises a robotic manipulator with a tool to hold a screw and to rotate the screw about a rotational axis. The screw is self-tapping and has a known thread geometry that is stored by a controller. A navigation system tracks a position of a target site. Movement of the robotic manipulator is controlled to maintain the rotational axis of the surgical tool along a planned trajectory with respect to the target site based on the tracked position of the target site. In autonomous or manual modes of operation, the rotational rate of the screw about the rotational axis and/or an advancement rate of the screw linearly along the planned trajectory is controlled to be proportional to the known thread geometry stored in the memory.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: June 15, 2021
    Assignee: MAKO Surgical Corp.
    Inventors: Hyosig Kang, Jienan Ding, David Gene Bowling, Christopher Wayne Jones, Greg McEwan, Lucas Gsellman
  • Publication number: 20190090966
    Abstract: A robotic system and methods for performing spine surgery are disclosed. The system comprises a robotic manipulator with a tool to hold a screw and to rotate the screw about a rotational axis. The screw is self-tapping and has a known thread geometry that is stored by a controller. A navigation system tracks a position of a target site. Movement of the robotic manipulator is controlled to maintain the rotational axis of the surgical tool along a planned trajectory with respect to the target site based on the tracked position of the target site. In autonomous or manual modes of operation, the rotational rate of the screw about the rotational axis and/or an advancement rate of the screw linearly along the planned trajectory is controlled to be proportional to the known thread geometry stored in the memory.
    Type: Application
    Filed: November 8, 2018
    Publication date: March 28, 2019
    Applicant: MAKO Surgical Corp.
    Inventors: Hyosig Kang, Jienan Ding, David Gene Bowling, Christopher Wayne Jones, Greg McEwan, Lucas Gsellman