Patents by Inventor Christopher Weth

Christopher Weth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220247906
    Abstract: A method for generating a brightness contribution for a picture element of an image includes providing a first data record including data which describe the effect on light rays of the lens, providing a second data record including data about a point of incidence of a light ray on the image recorder and about a virtual front surface, providing a transformation rule, calculating a first point of intersection of the light ray with the virtual front plane and a direction of the light ray at the first point of intersection by applying the transformation rule to the first and second data records, determining the brightness contribution of the light ray, storing an information item regarding the calculated brightness contribution. The first data record includes data about a second surface and the second data record includes data about a second point of intersection of the light beam with the second surface.
    Type: Application
    Filed: February 3, 2022
    Publication date: August 4, 2022
    Inventors: Martin Koerner, Alexander Schroer, Christopher Weth
  • Patent number: 10123687
    Abstract: A method for selecting an intraocular lens (IOL), to optimize the results of refractive procedures on the eye. According to the invention, the method for selecting the IOL includes: a) determining the required biometrical parameters of the eye; b) using the parameters for a corresponding eye model; c) evaluating, using ray tracing, the data of an IOL to be implanted; d) selecting, on the basis of said data, an IOL to be implanted; and e) repeating the method steps c) and d) for further suitable IOLs. To optimize the method, different measuring methods are used to determine the biometrical parameters, a corresponding patient-specific eye model is identified, and, when selecting the IOL, additional retinal image metrics are taken into consideration alongside the determined data. The method according to the invention permits the optimized selection of a spherical, aspheric, toric or multifocal IOL for implantation.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: November 13, 2018
    Assignee: Carl Zeiss Meditec AG
    Inventors: Tobias Bühren, Michael Trost, Christopher Weth, Ferid Bajramovic, Wei-Jun Chen, Martin Volkwardt, Michael Zimmermann
  • Patent number: 9526410
    Abstract: A method of inserting an intraocular lens into an eye comprises: determining preoperative values of an eye; selecting an intraocular lens based on the preoperative values; inserting the intraocular lens into the eye; determining intraoperative values of the eye; providing an eye model, wherein the eye model includes plural parameters; determining the second value representing a postoperative visual defect of the eye using the eye model, wherein the preoperative values of the eye are assigned to a first subset of the plural parameters of the eye model and wherein the intraoperative values of the eye are assigned to a second subset of the plural parameters of the eye model; and correcting the position and/or the orientation of the inserted intraocular lens or inserting a different intraocular lens based on the value representing the postoperative visual defect of the eye.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: December 27, 2016
    Assignees: CARL ZEISS MEDITEC AG, CARL ZEISS AG
    Inventors: Christoph Hauger, Markus Seesselberg, Christopher Weth, Marco Wilzbach
  • Publication number: 20160302660
    Abstract: A method for selecting an intraocular lens (IOL), to optimize the results of refractive procedures on the eye. According to the invention, the method for selecting the IOL includes: a) determining the required biometrical parameters of the eye; b) using the parameters for a corresponding eye model; c) evaluating, using ray tracing, the data of an IOL to be implanted; d) selecting, on the basis of said data, an IOL to be implanted; and e) repeating the method steps c) and d) for further suitable IOLs. To optimize the method, different measuring methods are used to determine the biometrical parameters, a corresponding patient-specific eye model is identified, and, when selecting the IOL, additional retinal image metrics are taken into consideration alongside the determined data. The method according to the invention permits the optimized selection of a spherical, aspheric, toric or multifocal IOL for implantation.
    Type: Application
    Filed: December 9, 2014
    Publication date: October 20, 2016
    Inventors: Tobias Bühren, Michael Trost, Christopher Weth, Ferid Bajramovic, Wei-Jun Chen, Martin Volkwardt, Michael Zimmerman
  • Patent number: 8934085
    Abstract: A bundle-guiding optical collector collects an emission of a radiation source and forms a radiation bundle from the collected emission. A reflective surface of the collector is the first bundle-forming surface downstream of the radiation source. The reflective surface is formed such that it converts the radiation source into a family of images in a downstream plane. The family of images includes a plurality of radiation source images which are offset to each other in two dimensions (x, y) in a direction perpendicular to the beam direction of the transformed radiation bundle and are arranged relative to each other in a non-rotationally symmetric manner relative to the beam direction of the transformed radiation bundle. The transformed radiation bundle in the downstream plane has a non-rotationally symmetric bundle edge contour relative to the beam direction of the transformed radiation bundle. The result is a collector in which the radiation bundle shape generated by the collector.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: January 13, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Udo Dinger, Christopher Weth
  • Publication number: 20140228948
    Abstract: A method of inserting an intraocular lens into an eye comprises: determining preoperative values of an eye; selecting an intraocular lens based on the preoperative values; inserting the intraocular lens into the eye; determining intraoperative values of the eye; providing an eye model, wherein the eye model includes plural parameters; determining the second value representing a postoperative visual defect of the eye using the eye model, wherein the preoperative values of the eye are assigned to a first subset of the plural parameters of the eye model and wherein the intraoperative values of the eye are assigned to a second subset of the plural parameters of the eye model; and correcting the position and/or the orientation of the inserted intraocular lens or inserting a different intraocular lens based on the value representing the postoperative visual defect of the eye.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 14, 2014
    Applicants: Carl Zeiss AG, Carl Zeiss Meditec AG
    Inventors: Christoph HAUGER, Markus SEESSELBERG, Christopher WETH, Marco WILZBACH
  • Publication number: 20100231882
    Abstract: A bundle-guiding optical collector collects an emission of a radiation source and forms a radiation bundle from the collected emission. A reflective surface of the collector is the first bundle-forming surface downstream of the radiation source. The reflective surface is formed such that it converts the radiation source into a family of images in a downstream plane. The family of images includes a plurality of radiation source images which are offset to each other in two dimensions (x, y) in a direction perpendicular to the beam direction of the transformed radiation bundle and are arranged relative to each other in a non-rotationally symmetric manner relative to the beam direction of the transformed radiation bundle. The transformed radiation bundle in the downstream plane has a non-rotationally symmetric bundle edge contour relative to the beam direction of the transformed radiation bundle. The result is a collector in which the radiation bundle shape generated by the collector.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 16, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Udo Dinger, Christopher Weth