Patents by Inventor Christopher Widener

Christopher Widener has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10340109
    Abstract: An ultrafast electromechanical switch having a drive mechanism comprising three non-movable contacts, an actuator and two movable contacts. The switch further including a switching chamber to provide a self-contained environment that may consist of a high-pressure gas or a vacuum and one or more precision adjustment screws coupled to the non-movable contacts for adjusting the contact pressure. The provided ultrafast electrical (e.g., transfer, disconnect, etc.) switch is simple, compact, clean, exhibits ultralow loss, does not require high energy to operate and is capable of being automatically reset.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: July 2, 2019
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Lukas Graber, Christopher Widener, Samantha Smith, Michael Steurer
  • Patent number: 10340108
    Abstract: An ultrafast electromechanical switch having a drive mechanism comprising two non-movable contacts connected to electrical feedthroughs, one actuator and one movable contact. The provided ultrafast electrical (e.g., transfer, disconnect, etc.) switch is simple, compact, clean, exhibits ultralow loss, does not require high energy to operate and is capable of being automatically reset.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: July 2, 2019
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Lukas Graber, Christopher Widener, Samantha Smith, Michael Steurer
  • Patent number: 10332711
    Abstract: An ultrafast electromechanical switch having a drive mechanism comprising three non-movable contacts, an actuator and two movable contacts. The switch further including one or more precision adjustment screws coupled to the non-movable contacts for adjusting the contact pressure. The provided ultrafast electrical (e.g., transfer, disconnect, etc.) switch is simple, compact, clean, exhibits ultralow loss, does not require high energy to operate and is capable of being automatically reset.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: June 25, 2019
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Lukas Graber, Christopher Widener, Samantha Smith, Michael Steurer
  • Patent number: 10332712
    Abstract: An ultrafast electromechanical switch having a drive mechanism comprising three non-movable contacts, an actuator, two movable contacts and a first and second mounting plate forming an elliptical shell configuration about said actuator. The switch further including a switching chamber to provide a self-contained environment that may consist of a high-pressure gas or a vacuum and one or more precision adjustment screws coupled to the non-movable contacts for adjusting the contact pressure. The provided ultrafast electrical (e.g., transfer, disconnect, etc.) switch is simple, compact, clean, exhibits ultralow loss, does not require high energy to operate and is capable of being automatically reset.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: June 25, 2019
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Lukas Graber, Christopher Widener, Samantha Smith, Michael Steurer
  • Publication number: 20190108959
    Abstract: An ultrafast electromechanical switch having a drive mechanism comprising two non-movable contacts connected to electrical feedthroughs, one actuator and one movable contact. The provided ultrafast electrical (e.g., transfer, disconnect, etc.) switch is simple, compact, clean, exhibits ultralow loss, does not require high energy to operate and is capable of being automatically reset.
    Type: Application
    Filed: November 20, 2018
    Publication date: April 11, 2019
    Inventors: Lukas Graber, Christopher Widener, Samantha Smith, Michael Steurer
  • Publication number: 20190108960
    Abstract: An ultrafast electromechanical switch having a drive mechanism comprising three non-movable contacts, an actuator and two movable contacts. The switch further including one or more precision adjustment screws coupled to the non-movable contacts for adjusting the contact pressure. The provided ultrafast electrical (e.g., transfer, disconnect, etc.) switch is simple, compact, clean, exhibits ultralow loss, does not require high energy to operate and is capable of being automatically reset.
    Type: Application
    Filed: November 20, 2018
    Publication date: April 11, 2019
    Inventors: Lukas Graber, Christopher Widener, Samantha Smith, Michael Steurer
  • Publication number: 20190088433
    Abstract: An ultrafast electromechanical switch having a drive mechanism comprising three non-movable contacts, an actuator and two movable contacts. The switch further including a switching chamber to provide a self-contained environment that may consist of a high-pressure gas or a vacuum and one or more precision adjustment screws coupled to the non-movable contacts for adjusting the contact pressure. The provided ultrafast electrical (e.g., transfer, disconnect, etc.) switch is simple, compact, clean, exhibits ultralow loss, does not require high energy to operate and is capable of being automatically reset.
    Type: Application
    Filed: November 20, 2018
    Publication date: March 21, 2019
    Inventors: Lukas Graber, Christopher Widener, Samantha Smith, Michael Steurer
  • Publication number: 20190088434
    Abstract: An ultrafast electromechanical switch having a drive mechanism comprising three non-movable contacts, an actuator, two movable contacts and a first and second mounting plate forming an elliptical shell configuration about said actuator. The switch further including a switching chamber to provide a self-contained environment that may consist of a high-pressure gas or a vacuum and one or more precision adjustment screws coupled to the non-movable contacts for adjusting the contact pressure. The provided ultrafast electrical (e.g., transfer, disconnect, etc.) switch is simple, compact, clean, exhibits ultralow loss, does not require high energy to operate and is capable of being automatically reset.
    Type: Application
    Filed: November 20, 2018
    Publication date: March 21, 2019
    Inventors: Lukas Graber, Christopher Widener, Samantha Smith, Michael Steurer
  • Patent number: 10186392
    Abstract: An ultrafast electrical (e.g., transfer, disconnect, etc.) switch that is simple, compact, does not require high energy to operate, ultralow loss, clean, and capable of being automatically reset. The invention includes a fast electromechanical switch having a drive mechanism integrated into the switching chamber. The integration of the drive mechanism into the switching chamber provides faster contact travel and therefore a faster switching operation. Additionally, the switching chamber is a self-contained environment that may consist of a high-pressure gas or a vacuum. The invention further includes an ultrafast disconnect switch. The invention generally is an integrated piezoelectric-actuator-based mechanical switching mechanism. The mechanism has a central piezoelectric actuator that extends to pull contacts inwards in order to obtain two disconnects within a millisecond or less. Surrounding the piezoelectric actuator is a polymer insulating shell and beyond the shell is the metallic conductor.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: January 22, 2019
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Lukas Graber, Christopher Widener, Samantha Smith, Michael Steurer
  • Publication number: 20160329182
    Abstract: An ultrafast electrical (e.g., transfer, disconnect, etc.) switch that is simple, compact, does not require high energy to operate, ultralow loss, clean, and capable of being automatically reset. The invention includes a fast electromechanical switch having a drive mechanism integrated into the switching chamber. The integration of the drive mechanism into the switching chamber provides faster contact travel and therefore a faster switching operation. Additionally, the switching chamber is a self-contained environment that may consist of a high-pressure gas or a vacuum. The invention further includes an ultrafast disconnect switch. The invention generally is an integrated piezoelectric-actuator-based mechanical switching mechanism. The mechanism has a central piezoelectric actuator that extends to pull contacts inwards in order to obtain two disconnects within a millisecond or less. Surrounding the piezoelectric actuator is a polymer insulating shell and beyond the shell is the metallic conductor.
    Type: Application
    Filed: July 19, 2016
    Publication date: November 10, 2016
    Inventors: Lukas Graber, Christopher Widener, Samantha Smith, Michael Steurer