Patents by Inventor Christopher William Newman

Christopher William Newman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10934981
    Abstract: A positive crankcase ventilation system for an internal combustion engine routes blowby gases into the intake of the engine. Because the blowby gases have about 12% water vapor, during cold-weather operation, the water vapor may freeze in the PCV valve or in the port that couples the PCV duct with the intake manifold. In situations in which the PCV duct is pointing toward the direction of flow of the intake gases, a hood or cap is placed over the end of the tube according to the present disclosure. It can be as simple as a 90-degree elbow or multiple openings in the cap. A centerline of the openings is perpendicular or at an obtuse angle with respect to the direction of flow in the duct so that the intake gases do not directly access the openings and cause freezing in the openings (or ports).
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: March 2, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher William Newman, Sandra Davidson Osip
  • Patent number: 10837358
    Abstract: An engine cover assembly including a fastener concealing plug is disclosed. The plug includes a conical wall having upper and lower ends. A lower circumferential ring is spaced apart from the upper ring. The lower end of the concealing plug includes a fastener-receiving recessed area. The fastener pocket of the engine cover includes upper and lower grooves having a ring area formed therebetween. The upper circumferential ring of the plug nests with the upper groove of the pocket, the recessed area of the plug nests with the ring area, and the lower circumferential ring of the plug nests with the lower groove of the pocket. The engine cover is positioned on the engine such that a cover attaching stud passes through a stud-passing aperture of the cover. A fastening nut is threaded onto the cover-attaching stud until it comes into contact with a compression-limiting spacer. The plug conceals the fastener.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: November 17, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher William Newman, Gary Nola
  • Patent number: 10428745
    Abstract: A plural port intake manifold with outlets aligned along a common cylinder head plane and each intake port containing, a valve unit including a valve plate that is rotatable by a shaft along an axis of rotation recessed within an inner wall as well as a welded connection encircling each intake port upstream of the axis. The system may allow the use of a plate CMCV that can fully retract into the intake runner when not in use.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: October 1, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher William Newman, David Laurinec, Katherine Jane Randall
  • Publication number: 20190195125
    Abstract: An engine cover assembly including a fastener concealing plug is disclosed. The plug includes a conical wall having upper and lower ends. A lower circumferential ring is spaced apart from the upper ring. The lower end of the concealing plug includes a fastener-receiving recessed area. The fastener pocket of the engine cover includes upper and lower grooves having a ring area formed therebetween. The upper circumferential ring of the plug nests with the upper groove of the pocket, the recessed area of the plug nests with the ring area, and the lower circumferential ring of the plug nests with the lower groove of the pocket. The engine cover is positioned on the engine such that a cover attaching stud passes through a stud-passing aperture of the cover. A fastening nut is threaded onto the cover-attaching stud until it comes into contact with a compression-limiting spacer. The plug conceals the fastener.
    Type: Application
    Filed: March 6, 2019
    Publication date: June 27, 2019
    Inventors: Christopher William Newman, Gary Nola
  • Publication number: 20190128223
    Abstract: A positive crankcase ventilation system for an internal combustion engine routes blowby gases into the intake of the engine. Because the blowby gases have about 12% water vapor, during cold-weather operation, the water vapor may freeze in the PCV valve or in the port that couples the PCV duct with the intake manifold. In situations in which the PCV duct is pointing toward the direction of flow of the intake gases, a hood or cap is placed over the end of the tube according to the present disclosure. It can be as simple as a 90-degree elbow or multiple openings in the cap. A centerline of the openings is perpendicular or at an obtuse angle with respect to the direction of flow in the duct so that the intake gases do not directly access the openings and cause freezing in the openings (or ports).
    Type: Application
    Filed: December 18, 2018
    Publication date: May 2, 2019
    Applicant: Ford Global Technologies, LLC
    Inventors: Christopher William Newman, Sandra Davidson Osip
  • Patent number: 10260414
    Abstract: An engine cover assembly including a fastener concealing plug is disclosed. The plug includes a conical wall having upper and lower ends. A lower circumferential ring is spaced apart from the upper ring. The lower end of the concealing plug includes a fastener-receiving recessed area. The fastener pocket of the engine cover includes upper and lower grooves having a ring area formed therebetween. The upper circumferential ring of the plug nests with the upper groove of the pocket, the recessed area of the plug nests with the ring area, and the lower circumferential ring of the plug nests with the lower groove of the pocket. The engine cover is positioned on the engine such that a cover attaching stud passes through a stud-passing aperture of the cover. A fastening nut is threaded onto the cover-attaching stud until it comes into contact with a compression-limiting spacer. The plug conceals the fastener.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: April 16, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher William Newman, Gary Nola
  • Patent number: 10215138
    Abstract: A positive crankcase ventilation system for an internal combustion engine routes blowby gases into the intake of the engine. Because the blowby gases have about 12% water vapor, during cold-weather operation, the water vapor may freeze in the PCV valve or in the port that couples the PCV duct with the intake manifold. In situations in which the PCV duct is pointing toward the direction of flow of the intake gases, a hood or cap is placed over the end of the tube according to the present disclosure. It can be as simple as a 90-degree elbow or multiple openings in the cap. A centerline of the openings is perpendicular or at an obtuse angle with respect to the direction of flow in the duct so that the intake gases do not directly access the openings and cause freezing in the openings (or ports).
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: February 26, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher William Newman, Sandra Davidson Osip
  • Patent number: 10174650
    Abstract: A vehicle incorporates a turbocharged internal combustion engine and a crankcase ventilation system. That crankcase ventilation system includes a first vent line connecting a cam cover at a first spigot to an air inlet duct at a second spigot. In addition the system includes a second vent line connected between the crankcase and the intake manifold of the engine. A one-way valve is provided in the second vent line. A restriction is integrated into either the first spigot, the second spigot or a quick connect that connects the first vent line to the first or second spigot.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: January 8, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher William Newman, Timothy Andrew Strand
  • Patent number: 10161365
    Abstract: A coupling system for attaching a first part to a second part using a locator and expansion shear pin is disclosed. The first part has a first flange and may be a formed part, such as an intake manifold. The second part has a second flange and may be a component, such as a throttle body, for attachment to the first part. The component includes a fastener-passing bore having an inner diameter. The locator and expansion shear pin extends perpendicularly from the first flange. The pin includes an expansion wall extending beyond the surface of the flange. A fastener-receiving bore is formed concentrically in the pin relative to the wall. The wall is expandable from a first diameter to a second diameter. The first diameter is less than the inner diameter of the fastener-passing bore. The second diameter is at least equal to the inner diameter of the fastener-passing bore.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: December 25, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Brent A. Hall, Christopher William Newman, Katherine Jane Brewer
  • Patent number: 10113520
    Abstract: A positioning bracket or a retention bracket to position an actuating arm connected to and at least partially external of an intake manifold, where the positioning bracket includes a body portion to receive there-through a fastener, and an ear portion extending from the body portion and defining an ear aperture to receive there-though a pin of the actuating arm.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: October 30, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Mike Hamzeh, Christopher William Newman, Katherine Jane Brewer
  • Patent number: 10094343
    Abstract: An intake manifold is provided that comprises a plurality of intake manifold runners 12, and each intake manifold runner comprises at least one elongated rib 15 and at least one elongated blister 14. The elongated rib 15 and the at least one elongated blister 14 operate together to control structural failure of the intake manifold in an impact event. Specifically, the elongated rib acts to receive and concentrate load while the at least one elongated blister provides an area of intentional failure, thus restricting the failure to a focused area on the intake manifold.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: October 9, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Gary Nola, Christopher William Newman
  • Patent number: 10087899
    Abstract: In an intake manifold that has charge-motion-control valves (CMCVs), a gap exists between the flapper valves and the wall of the intake runners. Although the gap is maintained as small as practical, it cannot be eliminated because manufacturing tolerances and temperature variations to which the intake manifold is subjected must be accommodated to prevent binding of the flapper valves. Some flow makes an end run through the gap leading to undesirable fluid mechanics. Disclosed herein is a seal that is positioned to rest gently upon the flapper valve near the gap such that the gap is substantially sealed off while applying a modest force on the CMCV so that the actuation torque is minimally impacted. The seal has a press-in-place portion inserted into a pocket formed in the manifold to hold it in place and a lip portion that extends out from the press-in-place portion to obstruct the gap.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: October 2, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Samuel Jeffrey Tomlinson, Christopher Snow, Christopher William Newman
  • Publication number: 20180149081
    Abstract: An engine cover assembly including a fastener concealing plug is disclosed. The plug includes a conical wall having upper and lower ends. A lower circumferential ring is spaced apart from the upper ring. The lower end of the concealing plug includes a fastener-receiving recessed area. The fastener pocket of the engine cover includes upper and lower grooves having a ring area formed therebetween. The upper circumferential ring of the plug nests with the upper groove of the pocket, the recessed area of the plug nests with the ring area, and the lower circumferential ring of the plug nests with the lower groove of the pocket. The engine cover is positioned on the engine such that a cover attaching stud passes through a stud-passing aperture of the cover. A fastening nut is threaded onto the cover-attaching stud until it comes into contact with a compression-limiting spacer. The plug conceals the fastener.
    Type: Application
    Filed: November 29, 2016
    Publication date: May 31, 2018
    Inventors: Christopher William Newman, Gary Nola
  • Publication number: 20180149080
    Abstract: An engine cover assembly including a stud-engaging engine cover pocket plug is disclosed. The plug conceals the cover fastener assembly. The plug includes a concealing cover and a stud attachment assembly extending from the cover. The assembly comprises a bridge, a pair of spaced apart legs attached to the bridge, and a base having a stud-retaining aperture. The bridge, the pair of spaced apart legs, and the base define a parallelogram such as a rectangle. The base of the stud attachment assembly has a long axis. According to one embodiment, the base includes a pair of opposed slots extending from the stud-retaining aperture in opposite directions along the long axis of the base. According to another embodiment, the base also includes a pair of opposed slots extending from the stud-retaining aperture. However, each slot extends in a direction that is perpendicular to the long axis of the base.
    Type: Application
    Filed: November 29, 2016
    Publication date: May 31, 2018
    Inventors: Christopher William Newman, Gary Nola
  • Patent number: 9938869
    Abstract: A high pressure charge air feed arrangement for an internal combustion engine is provided. The arrangement includes an intake having a high pressure output, a rocker cover having an intake runner defining a high pressure charge flow path, and a gas and oil separator having a flow accelerator with input and output sides. The high pressure output of the intake is attached to one end of the path and the accelerator is attached to the other end. The path is connected between the input and output sides of the accelerator. The separator includes upper and lower plenums divided by a wall having an oil and gas diffuser. The input side is connected to the lower plenum and the output side is connected to a crankcase oil return line. The flow accelerator may be any type of fluid accelerator, including, but not limited to, a venturi pump and a jet pump.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: April 10, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Rishi Dwivedi, Christopher William Newman, Roy Allen Ford
  • Publication number: 20180058398
    Abstract: A positive crankcase ventilation system for an internal combustion engine routes blowby gases into the intake of the engine. Because the blowby gases have about 12% water vapor, during cold-weather operation, the water vapor may freeze in the PCV valve or in the port that couples the PCV duct with the intake manifold. In situations in which the PCV duct is pointing toward the direction of flow of the intake gases, a hood or cap is placed over the end of the tube according to the present disclosure. It can be as simple as a 90-degree elbow or multiple openings in the cap. A centerline of the openings is perpendicular or at an obtuse angle with respect to the direction of flow in the duct so that the intake gases do not directly access the openings and cause freezing in the openings (or ports).
    Type: Application
    Filed: August 26, 2016
    Publication date: March 1, 2018
    Applicant: Ford Global Technologies, LLC
    Inventors: Christopher William Newman, Sandra Davidson Osip
  • Patent number: 9702281
    Abstract: A method and apparatus for providing constant fresh air ventilation to the engine crankcase are disclosed. The apparatus is adapted for use with an internal combustion engine having a crankcase, an intake manifold and an air input attached to the manifold. The system includes an integrated vacuum actuator connected to the intake manifold, an actuator duct positioned between the vacuum actuator and the air input, an air-from-oil separator associated with the crankcase, a separator duct and separator control valve positioned between the separator and the intake manifold, and a bypass duct and bypass control valve between the separator duct and the actuator duct. The air input comprises an initial intake pipe and an intermediate intake pipe with the intermediate intake pipe being positioned between the initial intake pipe and the intake manifold. A fresh air control pipe and regulator assembly are attached to the intermediate intake pipe.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: July 11, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher William Newman, Claude Weston Bailey, III, Scott Morton
  • Publication number: 20170175688
    Abstract: An intake manifold is provided that comprises a plurality of intake manifold runners 12, and each intake manifold runner comprises at least one elongated rib 15 and at least one elongated blister 14. The elongated rib 15 and the at least one elongated blister 14 operate together to control structural failure of the intake manifold in an impact event. Specifically, the elongated rib acts to receive and concentrate load while the at least one elongated blister provides an area of intentional failure, thus restricting the failure to a focused area on the intake manifold.
    Type: Application
    Filed: December 21, 2015
    Publication date: June 22, 2017
    Inventors: Gary Nola, Christopher William Newman
  • Publication number: 20170167451
    Abstract: In an intake manifold that has charge-motion-control valves (CMCVs), a gap exists between the flapper valves and the wall of the intake runners. Although the gap is maintained as small as practical, it cannot be eliminated because manufacturing tolerances and temperature variations to which the intake manifold is subjected must be accommodated to prevent binding of the flapper valves. Some flow makes an end run through the gap leading to undesirable fluid mechanics. Disclosed herein is a seal that is positioned to rest gently upon the flapper valve near the gap such that the gap is substantially sealed off while applying a modest force on the CMCV so that the actuation torque is minimally impacted. The seal has a press-in-place portion inserted into a pocket formed in the manifold to hold it in place and a lip portion that extends out from the press-in-place portion to obstruct the gap.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 15, 2017
    Inventors: Samuel Jeffrey Tomlinson, Christopher Snow, Christopher William Newman
  • Publication number: 20170096976
    Abstract: A coupling system for attaching a first part to a second part using a locator and expansion shear pin is disclosed. The first part has a first flange and may be a formed part, such as an intake manifold. The second part has a second flange and may be a component, such as a throttle body, for attachment to the first part. The component includes a fastener-passing bore having an inner diameter. The locator and expansion shear pin extends perpendicularly from the first flange. The pin includes an expansion wall extending beyond the surface of the flange. A fastener-receiving bore is formed concentrically in the pin relative to the wall. The wall is expandable from a first diameter to a second diameter. The first diameter is less than the inner diameter of the fastener-passing bore. The second diameter is at least equal to the inner diameter of the fastener-passing bore.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 6, 2017
    Inventors: Brent A. Hall, Christopher William Newman, Katherine Jane Brewer