Patents by Inventor Christopher Zachara
Christopher Zachara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10431873Abstract: Embodiments include an antenna assembly comprising a non-conductive housing having an open end; an antenna element positioned inside the non-conductive housing; an electrical cable having a first end electrically coupled to the antenna element and a second end extending out from the open end; one or more dielectric materials positioned inside the non-conductive housing; and a conductive gasket coupled to a portion of the electrical cable positioned adjacent to the open end and outside the non-conductive housing. One embodiment includes a portable wireless bodypack device comprising a frame having a first external sidewall opposite a second external sidewall; a first antenna housing forming a portion of the first sidewall and including a first diversity antenna; and a second antenna housing forming a portion of the second sidewall and including a second diversity antenna. Embodiments also include a method of manufacturing an antenna assembly for a portable wireless bodypack device.Type: GrantFiled: June 20, 2016Date of Patent: October 1, 2019Assignee: Shure Acquisitions Holdings, Inc.Inventors: Christopher Zachara, Christopher Richard Knipstein, Thomas John Downs
-
Patent number: 10348272Abstract: Adaptive self-tunable antenna systems and methods are provided including a closed-loop system for sensing near-field RF signals of transmitted RF signals and tuning an antenna or switching between multiple antennas, so that the strength of the transmitted RF signals is maximized. A sensing antenna detects the near-field RF signal, which is filtered and converted to an RF strength control signal that can be used to generate an antenna tuning control signal. An antenna tuner uses the antenna tuning control signal to keep the antenna in resonance by dynamically changing the electrical length of the antenna or switching between multiple antennas to maximize the strength of the radiated RF signal. Such antennas may be less prone to detuning due to interaction with human bodies or other objects. Dynamically matching the antennas to an RF power amplifier and low noise amplifier can improve stability, power efficiency, gain, noise figure, and receiver sensitivity.Type: GrantFiled: February 12, 2018Date of Patent: July 9, 2019Assignee: Shure Acquisition Holdings, Inc.Inventor: Christopher Zachara
-
Publication number: 20190181541Abstract: Embodiments include an antenna assembly for a wireless microphone, comprising a helical antenna including a feed point and at least one contact pin coupling the feed point to the wireless microphone. The helical antenna is configured for operation in first and second frequency bands. Embodiments also include a wireless microphone comprising a main body having top and bottom ends and an antenna assembly coupled to the bottom end. The antenna assembly comprises a helical antenna configured to transmit and receive wireless signals, an inner core configured to support the helical antenna on an outer surface of the inner core, and an outer shell formed over the inner core and the helical antenna. Embodiments further include a method of manufacturing an antenna assembly for a wireless microphone using a first manufacturing process to form a core unit of the antenna assembly and a second manufacturing process to form an overmold.Type: ApplicationFiled: February 14, 2019Publication date: June 13, 2019Inventors: Christopher Zachara, Adem Celebi, Gregory W. Bachman
-
Patent number: 10230153Abstract: Embodiments include a wireless microphone comprising an elongated main body configured for handheld operation of the microphone; a display bezel area included in the main body; a first antenna positioned at a bottom end of the main body; and a second antenna integrated into the display bezel area. Embodiments also include a wireless handheld microphone comprising a main body having a conductive housing and a tubular shape configured for handheld operation of the microphone; an opening included on a side surface of the conductive housing; a non-conductive cover coupled to the conductive housing and configured to cover the opening; and an antenna positioned adjacent to the non-conductive cover.Type: GrantFiled: June 20, 2016Date of Patent: March 12, 2019Assignee: Shure Acquisition Holdings, Inc.Inventors: Christopher Zachara, Gregory W. Bachman
-
Patent number: 10230159Abstract: Embodiments include an antenna assembly for a wireless microphone, comprising a helical antenna including a feed point and at least one contact pin coupling the feed point to the wireless microphone. The helical antenna is configured for operation in first and second frequency bands. Embodiments also include a wireless microphone comprising a main body having top and bottom ends and an antenna assembly coupled to the bottom end. The antenna assembly comprises a helical antenna configured to transmit and receive wireless signals, an inner core configured to support the helical antenna on an outer surface of the inner core, and an outer shell formed over the inner core and the helical antenna. Embodiments further include a method of manufacturing an antenna assembly for a wireless microphone using a first manufacturing process to form a core unit of the antenna assembly and a second manufacturing process to form an overmold.Type: GrantFiled: November 20, 2015Date of Patent: March 12, 2019Assignee: Shure Acquisition Holdings, Inc.Inventors: Christopher Zachara, Adem Celebi, Gregory W. Bachman
-
Publication number: 20180269857Abstract: Adaptive self-tunable antenna systems and methods are provided including a closed-loop system for sensing near-field RF signals of transmitted RF signals and tuning an antenna or switching between multiple antennas, so that the strength of the transmitted RF signals is maximized. A sensing antenna detects the near-field RF signal, which is filtered and converted to an RF strength control signal that can be used to generate an antenna tuning control signal. An antenna tuner uses the antenna tuning control signal to keep the antenna in resonance by dynamically changing the electrical length of the antenna or switching between multiple antennas to maximize the strength of the radiated RF signal. Such antennas may be less prone to detuning due to interaction with human bodies or other objects. Dynamically matching the antennas to an RF power amplifier and low noise amplifier can improve stability, power efficiency, gain, noise figure, and receiver sensitivity.Type: ApplicationFiled: February 12, 2018Publication date: September 20, 2018Inventor: Christopher Zachara
-
Patent number: 9893715Abstract: Adaptive self-tunable antenna systems and methods are provided including a closed-loop system for sensing near-field RF signals of transmitted RF signals and tuning an antenna or switching between multiple antennas, so that the strength of the transmitted RF signals is maximized. A sensing antenna detects the near-field RF signal, which is filtered and converted to an RF strength control signal that can be used to generate an antenna tuning control signal. An antenna tuner uses the antenna tuning control signal to keep the antenna in resonance by dynamically changing the electrical length of the antenna or switching between multiple antennas to maximize the strength of the radiated RF signal. Such antennas may be less prone to detuning due to interaction with human bodies or other objects. Dynamically matching the antennas to an RF power amplifier and low noise amplifier can improve stability, power efficiency, gain, noise figure, and receiver sensitivity.Type: GrantFiled: December 9, 2013Date of Patent: February 13, 2018Assignee: Shure Acquisition Holdings, Inc.Inventor: Christopher Zachara
-
Publication number: 20170365911Abstract: Embodiments include an antenna assembly comprising a non-conductive housing having an open end; an antenna element positioned inside the non-conductive housing; an electrical cable having a first end electrically coupled to the antenna element and a second end extending out from the open end; one or more dielectric materials positioned inside the non-conductive housing; and a conductive gasket coupled to a portion of the electrical cable positioned adjacent to the open end and outside the non-conductive housing. One embodiment includes a portable wireless bodypack device comprising a frame having a first external sidewall opposite a second external sidewall; a first antenna housing forming a portion of the first sidewall and including a first diversity antenna; and a second antenna housing forming a portion of the second sidewall and including a second diversity antenna. Embodiments also include a method of manufacturing an antenna assembly for a portable wireless bodypack device.Type: ApplicationFiled: June 20, 2016Publication date: December 21, 2017Inventors: Christopher Zachara, Christopher Richard Knipstein, Thomas John Downs
-
Publication number: 20170365910Abstract: Embodiments include a wireless microphone comprising an elongated main body configured for handheld operation of the microphone; a display bezel area included in the main body; a first antenna positioned at a bottom end of the main body; and a second antenna integrated into the display bezel area. Embodiments also include a wireless handheld microphone comprising a main body having a conductive housing and a tubular shape configured for handheld operation of the microphone; an opening included on a side surface of the conductive housing; a non-conductive cover coupled to the conductive housing and configured to cover the opening; and an antenna positioned adjacent to the non-conductive cover.Type: ApplicationFiled: June 20, 2016Publication date: December 21, 2017Inventors: Christopher Zachara, Gregory W. Bachman
-
Patent number: 9687174Abstract: A medical device position guidance system having a noninvasive medical device communicable with an invasive medical device. The system provides outputs useful to assess the position of an invasive medical device in an animal, such as a human. A magnetic field is used to gather information about the position of the invasive device. Radio waves are used to communicate this information between the noninvasive device and the invasive device.Type: GrantFiled: May 16, 2012Date of Patent: June 27, 2017Assignee: Corpak Medsystems, Inc.Inventors: David S. Jaggi, Donald A. Kay, Joseph P. Killam, Salvatore Manzella, Jr., King Y. Moy, David K. Platt, Shawn G. Purnell, Alan R. Shapiro, Michael C. Shaughnessy, Mark C. Witt, Christopher Zachara
-
Publication number: 20170149121Abstract: Embodiments include an antenna assembly for a wireless microphone, comprising a helical antenna including a feed point and at least one contact pin coupling the feed point to the wireless microphone. The helical antenna is configured for operation in first and second frequency bands. Embodiments also include a wireless microphone comprising a main body having top and bottom ends and an antenna assembly coupled to the bottom end. The antenna assembly comprises a helical antenna configured to transmit and receive wireless signals, an inner core configured to support the helical antenna on an outer surface of the inner core, and an outer shell formed over the inner core and the helical antenna. Embodiments further include a method of manufacturing an antenna assembly for a wireless microphone using a first manufacturing process to form a core unit of the antenna assembly and a second manufacturing process to form an overmold.Type: ApplicationFiled: November 20, 2015Publication date: May 25, 2017Inventors: Christopher Zachara, Adem Celebi, Gregory W. Bachman
-
Publication number: 20150162897Abstract: Adaptive self-tunable antenna systems and methods are provided including a closed-loop system for sensing near-field RF signals of transmitted RF signals and tuning an antenna or switching between multiple antennas, so that the strength of the transmitted RF signals is maximized. A sensing antenna detects the near-field RF signal, which is filtered and converted to an RF strength control signal that can be used to generate an antenna tuning control signal. An antenna tuner uses the antenna tuning control signal to keep the antenna in resonance by dynamically changing the electrical length of the antenna or switching between multiple antennas to maximize the strength of the radiated RF signal. Such antennas may be less prone to detuning due to interaction with human bodies or other objects. Dynamically matching the antennas to an RF power amplifier and low noise amplifier can improve stability, power efficiency, gain, noise figure, and receiver sensitivity.Type: ApplicationFiled: December 9, 2013Publication date: June 11, 2015Applicant: Shure Acquistion Holdings, Inc.Inventor: Christopher Zachara
-
Publication number: 20120226148Abstract: A medical device position guidance system having a noninvasive medical device communicable with an invasive medical device. The system provides outputs useful to assess the position of an invasive medical device in an animal, such as a human. A magnetic field is used to gather information about the position of the invasive device. Radio waves are used to communicate this information between the noninvasive device and the invasive device.Type: ApplicationFiled: May 16, 2012Publication date: September 6, 2012Applicant: Corpak Medystems, Inc.Inventors: David S. Jaggi, Donald A. Kay, Joseph P. Killam, Salvatore Manzella, JR., King Y. Moy, David K. Platt, Shawn G. Purnell, Alan R. Shapiro, Michael C. Shaughnessy, Mark C. Witt, Christopher Zachara
-
Patent number: 8197494Abstract: A medical device position guidance system having a noninvasive medical device communicable with an invasive medical device. The system provides outputs useful to assess the position of an invasive medical device in an animal, such as a human. A magnetic field is used to gather information about the position of the invasive device. Radio waves are used to communicate this information between the noninvasive device and the invasive device.Type: GrantFiled: September 8, 2006Date of Patent: June 12, 2012Assignee: Corpak Medsystems, Inc.Inventors: David S. Jaggi, Donald A. Kay, Joseph P. Killam, Salvatore Manzella, Jr., King Y. Moy, David K. Platt, Shawn G. Purnell, Alan R. Shapiro, Michael C. Shaughnessy, Mark C. Witt, Christopher Zachara
-
Publication number: 20080097475Abstract: A medical device position guidance system having a noninvasive medical device communicable with an invasive medical device. The system provides outputs useful to assess the position of an invasive medical device in an animal, such as a human. A magnetic field is used to gather information about the position of the invasive device. Radio waves are used to communicate this information between the noninvasive device and the invasive device.Type: ApplicationFiled: September 8, 2006Publication date: April 24, 2008Applicant: VIASYS HOLDINGS, INC.Inventors: David S. Jaggi, Donald A. Kay, Joseph P. Killam, Salvatore Manzella, King Y. Moy, David K. Platt, Shawn G. Purnell, Alan R. Shapiro, Michael C. Shaughnessy, Mark C. Witt, Christopher Zachara