Patents by Inventor Chu-Jie HUANG

Chu-Jie HUANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240040800
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell comprising a blocking layer configured to block diffusion of metal from an electrode of the memory cell to a ferroelectric layer of the memory cell. More particularly, the blocking layer and the ferroelectric layer are between a top electrode of the memory cell and a bottom electrode of the memory cell, which both comprise metal. Further, the blocking layer is between the ferroelectric layer and the electrode, which corresponds to one of the top and bottom electrodes. In some embodiments, the metal of the one of the top and bottom electrodes has a lowest electronegativity amongst the metals of top and bottom electrodes and is hence the most reactive and likely to diffuse amongst the metals of top and bottom electrodes.
    Type: Application
    Filed: January 5, 2023
    Publication date: February 1, 2024
    Inventors: Tzu-Yu Chen, Chu-Jie Huang, Wan-Chen Chen, Fu-Chen Chang, Sheng-Hung Shih, Kuo-Chi Tu
  • Publication number: 20230274780
    Abstract: Methods for programming memory cells of a resistive memory device include applying a voltage pulse sequence to a memory cell to set a logic state of the memory cell. An initial set sequence of voltage pulses may be applied to the memory cell, followed by a reform voltage pulse having an amplitude greater than the amplitudes of the initial set sequence, and within ±5% of the amplitude of a voltage pulse used in an initial forming process. Additional voltage pulses having amplitudes that are less than the amplitude of the reform voltage pulse may be subsequently applied. By applying a reform voltage pulse in the middle of, or at the end of, a memory set sequence including multiple voltage pulses, a resistive memory device may have a larger memory window and improved data retention relative to resistive memory devices programmed using conventional programming methods.
    Type: Application
    Filed: May 5, 2023
    Publication date: August 31, 2023
    Inventors: Fu-Chen Chang, Chu-Jie Huang, Nai-Chao Su, Kuo-Chi Tu, Wen-Ting Chu
  • Publication number: 20230217842
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell comprising a barrier layer to constrain the movement of metal cations during operation of the RRAM cell. In some embodiments, the RRAM cell further comprises a bottom electrode, a top electrode, a switching layer, and an active metal layer. The switching layer, the barrier layer, and the active metal layer are stacked between the bottom and top electrodes, and the barrier layer is between the switching and active metal layers. The barrier layer is conductive and between has a lattice constant less than that of the active metal layer.
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Inventors: Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu, Chu-Jie Huang
  • Patent number: 11682456
    Abstract: Methods for programming memory cells of a resistive memory device include applying a voltage pulse sequence to a memory cell to set a logic state of the memory cell. An initial set sequence of voltage pulses may be applied to the memory cell, followed by a reform voltage pulse having an amplitude greater than the amplitudes of the initial set sequence, and within ±5% of the amplitude of a voltage pulse used in an initial forming process. Additional voltage pulses having amplitudes that are less than the amplitude of the reform voltage pulse may be subsequently applied. By applying a reform voltage pulse in the middle of, or at the end of, a memory set sequence including multiple voltage pulses, a resistive memory device may have a larger memory window and improved data retention relative to resistive memory devices programmed using conventional programming methods.
    Type: Grant
    Filed: August 28, 2021
    Date of Patent: June 20, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Fu-Chen Chang, Chu-Jie Huang, Nai-Chao Su, Kuo-Chi Tu, Wen-Ting Chu
  • Patent number: 11611038
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell comprising a barrier layer to constrain the movement of metal cations during operation of the RRAM cell. In some embodiments, the RRAM cell further comprises a bottom electrode, a top electrode, a switching layer, and an active metal layer. The switching layer, the barrier layer, and the active metal layer are stacked between the bottom and top electrodes, and the barrier layer is between the switching and active metal layers. The barrier layer is conductive and between has a lattice constant less than that of the active metal layer.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: March 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu, Chu-Jie Huang
  • Publication number: 20230062850
    Abstract: Methods for programming memory cells of a resistive memory device include applying a voltage pulse sequence to a memory cell to set a logic state of the memory cell. An initial set sequence of voltage pulses may be applied to the memory cell, followed by a reform voltage pulse having an amplitude greater than the amplitudes of the initial set sequence, and within ±5% of the amplitude of a voltage pulse used in an initial forming process. Additional voltage pulses having amplitudes that are less than the amplitude of the reform voltage pulse may be subsequently applied. By applying a reform voltage pulse in the middle of, or at the end of, a memory set sequence including multiple voltage pulses, a resistive memory device may have a larger memory window and improved data retention relative to resistive memory devices programmed using conventional programming methods.
    Type: Application
    Filed: August 28, 2021
    Publication date: March 2, 2023
    Inventors: Fu-Chen CHANG, Chu-Jie HUANG, Nai-Chao SU, Kuo-Chi TU, Wen-Ting CHU
  • Publication number: 20210184114
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell comprising a barrier layer to constrain the movement of metal cations during operation of the RRAM cell. In some embodiments, the RRAM cell further comprises a bottom electrode, a top electrode, a switching layer, and an active metal layer. The switching layer, the barrier layer, and the active metal layer are stacked between the bottom and top electrodes, and the barrier layer is between the switching and active metal layers. The barrier layer is conductive and between has a lattice constant less than that of the active metal layer.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 17, 2021
    Inventors: Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu, Chu-Jie Huang
  • Patent number: 11017852
    Abstract: A method of forming a memory device includes: forming a polish stop layer over a metallization layer in an inter-metal dielectric layer; performing an etching process to form an opening in the polish stop layer, in which a sidewall of the opening extends at an acute angle relative to a top surface of the polish stop layer; forming an electrode material in the opening and over the polish stop layer; planarizing the electrode material until a top surface of the polish stop layer is exposed so as to form a bottom electrode surrounded by the polish stop layer; and forming a stack of a resistance switching layer and a top electrode over the bottom electrode.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: May 25, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Chi Tu, Chu-Jie Huang, Sheng-Hung Shih, Nai-Chao Su, Wen-Ting Chu
  • Patent number: 11011224
    Abstract: A memory device includes a metal structure, a first dielectric layer, a bottom electrode, a second dielectric layer, a resistance switching layer, and a top electrode. The first dielectric layer surrounds the metal structure. The bottom electrode is in contact with a top surface of the metal structure. The second dielectric layer surrounds the bottom electrode, in which a top surface of the bottom electrode is higher than a top surface of the second dielectric layer. The resistance switching layer is over the bottom electrode. The top electrode is over the resistance switching layer.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: May 18, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Chi Tu, Chu-Jie Huang, Sheng-Hung Shih, Nai-Chao Su, Wen-Ting Chu
  • Patent number: 10950784
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell comprising a barrier layer to constrain the movement of metal cations during operation of the RRAM cell. In some embodiments, the RRAM cell further comprises a bottom electrode, a top electrode, a switching layer, and an active metal layer. The switching layer, the barrier layer, and the active metal layer are stacked between the bottom and top electrodes, and the barrier layer is between the switching and active metal layers. The barrier layer is conductive and has a lattice constant less than that of the active metal layer.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: March 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu, Chu-Jie Huang
  • Publication number: 20200388755
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell comprising a barrier layer to constrain the movement of metal cations during operation of the RRAM cell. In some embodiments, the RRAM cell further comprises a bottom electrode, a top electrode, a switching layer, and an active metal layer. The switching layer, the barrier layer, and the active metal layer are stacked between the bottom and top electrodes, and the barrier layer is between the switching and active metal layers. The barrier layer is conductive and between has a lattice constant less than that of the active metal layer.
    Type: Application
    Filed: June 7, 2019
    Publication date: December 10, 2020
    Inventors: Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu, Chu-Jie Huang
  • Publication number: 20200105344
    Abstract: A method of forming a memory device includes: forming a polish stop layer over a metallization layer in an inter-metal dielectric layer; performing an etching process to form an opening in the polish stop layer, in which a sidewall of the opening extends at an acute angle relative to a top surface of the polish stop layer; forming an electrode material in the opening and over the polish stop layer; planarizing the electrode material until a top surface of the polish stop layer is exposed so as to form a bottom electrode surrounded by the polish stop layer; and forming a stack of a resistance switching layer and a top electrode over the bottom electrode.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 2, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Chi TU, Chu-Jie HUANG, Sheng-Hung SHIH, Nai-Chao SU, Wen-Ting CHU
  • Publication number: 20200105343
    Abstract: A memory device includes a metal structure, a first dielectric layer, a bottom electrode, a second dielectric layer, a resistance switching layer, and a top electrode. The first dielectric layer surrounds the metal structure. The bottom electrode is in contact with a top surface of the metal structure. The second dielectric layer surrounds the bottom electrode, in which a top surface of the bottom electrode is higher than a top surface of the second dielectric layer. The resistance switching layer is over the bottom electrode. The top electrode is over the resistance switching layer.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 2, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Chi TU, Chu-Jie HUANG, Sheng-Hung SHIH, Nai-Chao SU, Wen-Ting CHU
  • Patent number: 10497436
    Abstract: A memory device includes a bottom electrode, a resistance switching layer and a top electrode. The bottom electrode is over a metallization layer embedded in an inter-metal dielectric layer. The bottom electrode has a top surface and a sidewall that extends at an obtuse angle relative to the top surface. The resistance switching layer is over the bottom electrode. The top electrode is over the resistance switching layer.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: December 3, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Chi Tu, Chu-Jie Huang, Sheng-Hung Shih, Nai-Chao Su, Wen-Ting Chu
  • Publication number: 20190164602
    Abstract: A memory device includes a bottom electrode, a resistance switching layer and a top electrode. The bottom electrode is over a metallization layer embedded in an inter-metal dielectric layer. The bottom electrode has a top surface and a sidewall that extends at an obtuse angle relative to the top surface. The resistance switching layer is over the bottom electrode. The top electrode is over the resistance switching layer.
    Type: Application
    Filed: January 12, 2018
    Publication date: May 30, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Chi TU, Chu-Jie HUANG, Sheng-Hung SHIH, Nai-Chao SU, Wen-Ting CHU
  • Patent number: 10181560
    Abstract: A conductive-bridging random access memory and a method for fabricating a conductive-bridging random access memory are provided. The conductive-bridging random access memory includes a bottom electrode layer on a semiconductor substrate, an electrical resistance switching layer on the bottom electrode layer, an electron-capturing layer on the electrical resistance switching layer, a barrier layer on the electron-capturing layer, an ion source layer on the barrier layer, and a top electrode layer on the ion source layer. The electron-capturing layer includes electron-capturing material, and the electron affinity of the electron-capturing material is at least 60 KJ/mole.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: January 15, 2019
    Assignee: Winbond Electronics Corp.
    Inventors: Tseung-Yuen Tseng, Chun-An Lin, Chu-Jie Huang, Guang-Jyun Dai
  • Publication number: 20180212143
    Abstract: A conductive-bridging random access memory and a method for fabricating a conductive-bridging random access memory are provided. The conductive-bridging random access memory includes a bottom electrode layer on a semiconductor substrate, an electrical resistance switching layer on the bottom electrode layer, an electron-capturing layer on the electrical resistance switching layer, a barrier layer on the electron-capturing layer, an ion source layer on the barrier layer, and a top electrode layer on the ion source layer. The electron-capturing layer includes electron-capturing material, and the electron affinity of the electron-capturing material is at least 60 KJ/mole.
    Type: Application
    Filed: January 11, 2018
    Publication date: July 26, 2018
    Inventors: Tseung-Yuen TSENG, Chun-An LIN, Chu-Jie HUANG, Guang-Jyun DAI