Patents by Inventor Chuan-Lung Chuang

Chuan-Lung Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8293567
    Abstract: A copper/indium/gallium/selenium (CIGS) solar cell including a thermal expansion buffer layer, and a method for fabricating the same are provided. The thermal expansion buffer layer is configured between an alloy thin film layer and a CIGS thin film layer. The thermal expansion buffer layer is deposited by executing a thin film deposition process with a continuous sputtering machine bombarding a cuprous sulphide (Cu2S) or cuprous selenide (Cu2Se) target. Then, a CIGS thin film is further provided on the thermal expansion buffer layer. Finally, a thermal treatment is conducted for melting to integrate the copper ingredients of different thin film layers, thus improving the bondability between the thin film layers and preventing the cracking or the peeling off of the thin film layers caused by the thermal expansion difference.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: October 23, 2012
    Assignee: Jenn Feng Industrial Co., Ltd.
    Inventor: Chuan-Lung Chuang
  • Patent number: 8026124
    Abstract: A method for fabricating a copper/indium/gallium/selenium solar cell by a wet process under non-vacuum condition is provided.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: September 27, 2011
    Assignee: Jenn Feng New Energy Co., Ltd.
    Inventor: Chuan-Lung Chuang
  • Patent number: 7998789
    Abstract: A method and a system for forming a copper indium gallium sulfur selenide (CIGSSe) absorption layer and a cadmium sulfide (CdS) buffer layer under non-vacuum condition is disclosed. A coating layer is formed on the back electrode layer on the substrate by mixing the slurry on the back electrode layer, and the coating layer formed on the back electrode layer is densified by a densification device after initially dried, and then a primary selenization/sulfurization reaction process is carried out to form a primary CIGSSe layer, and then a thermal process is carried out to improve the lattice match of the primary CIGSSe layer, and then an impurity cleaning process is carried out by using potassium cyanide or bromide to remove the impurities of cuprous selenide and copper sulfide, and then a rear-stage selenization/sulfurization reaction process is carried out to produce the required rear-stage CIGSSe absorption layer.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: August 16, 2011
    Assignee: Jenn Feng New Energy Co., Ltd.
    Inventor: Chuan-Lung Chuang
  • Publication number: 20110192463
    Abstract: A copper/indium/gallium/selenium (CIGS) solar cell structure and a method for fabricating the same are provided. The CIGS solar cell structure includes a substrate, a molybdenum thin film layer, an alloy thin film layer, and a CIGS thin film layer. The alloy thin film layer is provided between the molybdenum thin film layer and the CIGS thin film layer, serving as a conductive layer of the CIGS solar cell structure. The alloy thin film layer is composed of a variety of high electrically conductive materials (such as molybdenum, copper, aluminum, and silver) in different atomic proportions.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 11, 2011
    Inventor: Chuan-Lung Chuang
  • Publication number: 20110189813
    Abstract: A method for fabricating a copper/indium/gallium/selenium solar cell by a wet process under non-vacuum condition is provided.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 4, 2011
    Applicant: JENN FENG NEW ENERGY CO., LTD.
    Inventor: Chuan-Lung Chuang
  • Publication number: 20110117692
    Abstract: A copper/indium/gallium/selenium (CIGS) solar cell including a thermal expansion buffer layer, and a method for fabricating the same are provided. The thermal expansion buffer layer is configured between an alloy thin film layer and a CIGS thin film layer. The thermal expansion buffer layer is deposited by executing a thin film deposition process with a continuous sputtering machine bombarding a cuprous sulphide (Cu2S) or cuprous selenide (Cu2Se) target. Then, a CIGS thin film is further provided on the thermal expansion buffer layer. Finally, a thermal treatment is conducted for melting to integrate the copper ingredients of different thin film layers, thus improving the bondability between the thin film layers and preventing the cracking or the peeling off of the thin film layers caused by the thermal expansion difference.
    Type: Application
    Filed: January 26, 2011
    Publication date: May 19, 2011
    Applicant: JENN FENG INDUSTRIAL CO., LTD.
    Inventor: Chuan-Lung Chuang
  • Publication number: 20110086465
    Abstract: A copper/indium/gallium/selenium (CIGS) solar cell structure and a method for fabricating the same are provided. The CIGS solar cell structure includes a substrate, a molybdenum thin film layer, an alloy thin film layer, and a CIGS thin film layer. According to the present invention, the alloy thin film layer is provided between the molybdenum thin film layer and the CIGS thin film layer, serving as a conductive layer of the CIGS solar cell structure. The alloy thin film layer is composed of a variety of high electrically conductive materials (such as molybdenum, copper, aluminum, and silver) in different proportions.
    Type: Application
    Filed: December 16, 2010
    Publication date: April 14, 2011
    Inventor: Chuan-Lung Chuang
  • Patent number: 7922804
    Abstract: A method for preparing a sol-gel solution is provided. During a first stage mixture preparation process, a metal compound mixture is obtained by mixing compounds of Cu, In, Ga, and Se, a diluting dispersant is obtained by adding a diluent into a dispersant, a stabilizing adhesive is obtained by mixing a stabilizer, a leveling agent, and an adhesive together, an anti-freezing coagulant is obtained by mixing an anti-freezer with a retarding coagulant, and a metallic reducing agent is obtained by mixing a reducing agent, a metal complexing agent with a metal abstracting solvent. Then, the metal compound mixture, the diluting dispersant, the stabilizing adhesive, the anti-freezing coagulant, and the metallic reducing agent are mixed, heated and stirred, and then cooled down to obtain a sol-gel solution. The sol-gel solution can be provided for the ink coating technology for configuring the CIGS light absorbing layer of the CIGS solar cell.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: April 12, 2011
    Assignee: Jenn Feng Industrial Co., Ltd.
    Inventor: Chuan-Lung Chuang
  • Patent number: 7915072
    Abstract: A coating method for preparing a light absorbing layer of a solar cell is provided. In a non-vacuum environment, an ultrasonic vibrating mixer is employed to mix a CIGS mixture with a mixing fluid to obtain a CIGS coating material. The CIGS coating material is then uniformly coated on a molybdenum (Mo) layer which is driven by a conveyor device, so as to form a CIGS coating material layer having a uniform thickness on the Mo layer. An infrared ray (IR) heating lamp is then used to dry the CIGS coating material layer for removing residue of the mixing fluid remained in the CIGS coating material layer. In such a way, a CIGS light absorbing layer adapted for absorbing a solar energy and converting the absorbed solar energy into an electric energy is obtained. The CIGS light absorbing layer can be then used for fabricating a CIGS solar cell.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: March 29, 2011
    Assignee: Jenn Feng New Energy Co., Ltd.
    Inventor: Chuan-Lung Chuang
  • Publication number: 20100242800
    Abstract: A method for preparing a sol-gel solution is provided. During a first stage mixture preparation process, a metal compound mixture is obtained by mixing compounds of Cu, In, Ga, and Se, a diluting dispersant is obtained by adding a diluent into a dispersant, a stabilizing adhesive is obtained by mixing a stabilizer, a leveling agent, and an adhesive together, an anti-freezing coagulant is obtained by mixing an anti-freezer with a retarding coagulant, and a metallic reducing agent is obtained by mixing a reducing agent, a metal complexing agent with a metal abstracting solvent. Then, the metal compound mixture, the diluting dispersant, the stabilizing adhesive, the anti-freezing coagulant, and the metallic reducing agent are mixed, heated and stirred, and then cooled down to obtain a sol-gel solution. The sol-gel solution can be provided for the ink coating technology for configuring the CIGS light absorbing layer of the CIGS solar cell.
    Type: Application
    Filed: March 25, 2009
    Publication date: September 30, 2010
    Inventor: Chuan-Lung Chuang
  • Publication number: 20100243043
    Abstract: A light absorbing layer of a CIGS solar cell and a method for fabricating the same are provided. According to the present invention, a cuprous sulfide layer is prepared by a sputtering process. Then, a CIGS sol-gel solution is provided onto the cuprous sulfide layer by an immersion coating, spin coating, printing, or spray coating process. The CIGS sol-gel solution is then baked to form a plurality of a CIGS stack layers containing copper (Cu), indium (In), gallium (Ga), and selenium (Se). A rapid thermal process is then conducted for melting the cuprous sulfide layer and the CIGS stack layers to form a copper/indium/gallium/sulfur/selenium (CIGSS) light absorbing layer. The CIGSS light absorbing layer is provided for a solar cell to improve the photoelectric transformation efficiency and the light absorbance.
    Type: Application
    Filed: March 25, 2009
    Publication date: September 30, 2010
    Inventor: Chuan-Lung Chuang
  • Publication number: 20100236629
    Abstract: A copper/indium/gallium/selenium (CIGS) solar cell structure and a method for fabricating the same are provided. The CIGS solar cell structure includes a substrate, a molybdenum thin film layer, an alloy thin film layer, and a CIGS thin film layer. According to the present invention, the alloy thin film layer is provided between the molybdenum thin film layer and the CIGS thin film layer, serving as a conductive layer of the CIGS solar cell structure. The alloy thin film layer is composed of a variety of high electrically conductive materials (such as molybdenum, copper, aluminum, and silver) in different proportions.
    Type: Application
    Filed: March 19, 2009
    Publication date: September 23, 2010
    Inventor: Chuan-Lung Chuang
  • Publication number: 20100236616
    Abstract: A copper/indium/gallium/selenium (CIGS) solar cell including a thermal expansion buffer layer, and a method for fabricating the same are provided. The thermal expansion buffer layer is configured between an alloy thin film layer and a CIGS thin film layer. The thermal expansion buffer layer is deposited by executing a thin film deposition process with a continuous sputtering machine bombarding a cuprous sulphide (Cu2S) or cuprous selenide (Cu2Se) target. Then, a CIGS thin film is further provided on the thermal expansion buffer layer. Finally, a thermal treatment is conducted for melting to integrate the copper ingredients of different thin film layers, thus improving the bondability between the thin film layers and preventing the cracking or the peeling off of the thin film layers caused by the thermal expansion difference.
    Type: Application
    Filed: March 19, 2009
    Publication date: September 23, 2010
    Applicant: JENN FENG INDUSTRIAL CO., LTD.
    Inventor: Chuan-Lung Chuang