Patents by Inventor Chuanyun Wang

Chuanyun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8803489
    Abstract: Light load efficiency of a power factor correction circuit is improved by adaptive on-time control and providing for selection between a continuous conduction mode and a discontinuous conduction mode wherein the discontinuous conduction mode increases time between switching pulses controlling connection of a cyclically varying voltage to a filter/inductor that delivers a desired DC voltage and thus can greatly reduce the switching frequency at light loads where switching frequency related losses dominate efficiency. The mode for controlling switching is preferably selected for each switching pulse within a half cycle of the cyclically varying input voltage. A multi-phase embodiment allows cancellation of EMI noise at harmonics of the switching frequency and adaptive change of phase angle allows for cancellation of dominant higher order harmonics as switching frequency is reduced.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: August 12, 2014
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Qian Li, Fred C. Lee, Ming Xu, Chuanyun Wang
  • Patent number: 8760128
    Abstract: A three-phase boost-buck PFC converter including three independent single-phase boost-buck PFC circuits respectively is provided, which are capable of performing PFC on each phase of the three-phase power. The single-phase boost-buck PFC circuit is composed of two single-phase boost-buck converters independently working in a positive and a negative half cycle of an input voltage, and the two single-phase boost-buck converters are connected in parallel at an input side, and are connected in series at an output side, and each of the single-phase boost-buck converters is composed of a front-end boost circuit and a back-end buck circuit connected in cascade. Compared to the existing technique, regardless of a boost mode or a buck mode, the conduction loss is effectively reduced, and the whole system efficiency is effectively improved.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: June 24, 2014
    Assignees: FSP Technology Inc., FSP-Powerland Technology Inc.
    Inventors: Ming Xu, Chuanyun Wang, Peng Mao
  • Publication number: 20120242299
    Abstract: A three-phase boost-buck PFC converter including three independent single-phase boost-buck PFC circuits respectively is provided, which are capable of performing PFC on each phase of the three-phase power. The single-phase boost-buck PFC circuit is composed of two single-phase boost-buck converters independently working in a positive and a negative half cycle of an input voltage, and the two single-phase boost-buck converters are connected in parallel at an input side, and are connected in series at an output side, and each of the single-phase boost-buck converters is composed of a front-end boost circuit and a back-end buck circuit connected in cascade. Compared to the existing technique, regardless of a boost mode or a buck mode, the conduction loss is effectively reduced, and the whole system efficiency is effectively improved.
    Type: Application
    Filed: January 13, 2012
    Publication date: September 27, 2012
    Applicants: FSP-POWERLAND TECHNOLOGY INC., FSP TECHNOLOGY INC.
    Inventors: Ming Xu, Chuanyun Wang, Peng Mao
  • Publication number: 20120014148
    Abstract: Light load efficiency of a power factor correction circuit is improved by adaptive on-time control and providing for selection between a continuous conduction mode and a discontinuous conduction mode wherein the discontinuous conduction mode increases time between switching pulses controlling connection of a cyclically varying voltage to a filter/inductor that delivers a desired DC voltage and thus can greatly reduce the switching frequency at light loads where switching frequency related losses dominate efficiency. The mode for controlling switching is preferably selected for each switching pulse within a half cycle of the cyclically varying input voltage. A multi-phase embodiment allows cancellation of EMI noise at harmonics of the switching frequency and adaptive change of phase angle allows for cancellation of dominant higher order harmonics as switching frequency is reduced.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 19, 2012
    Inventors: Qian Li, Fred C. Lee, Ming Xu, Chuanyun Wang
  • Patent number: 7746675
    Abstract: In a power converter having m=two or more channels of power factor correction (PFC) circuits connected in parallel and an electromagnetic interference (EMI) filter connected in series therewith, phase shifts in switching between the respective PFC channels can allow increase of EMI filter corner frequency allowing reduction of size and cost of the EMI filter at some switching frequencies. Asymmetrical phase shifts (other than 360°/m) such as 360°/2m and other phase shifts and variations in m allow increase of EMI filter corner frequency at switching frequencies where symmetrical, 360°/m phase shifts provide no benefit to EMI filter design by providing cancellation or partial cancellation of different harmonics of the switching noise; which cancellation may be arranged to be complementary to the EMI filter function at more than one peak of the noise spectrum. (Such asymmetrical phase shifts do not significantly increase ripple and consequent switching noise).
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: June 29, 2010
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Chuanyun Wang, Ming Xu, Fred C. Lee
  • Publication number: 20080239771
    Abstract: In a power converter having m=two or more channels of power factor correction (PFC) circuits connected in parallel and an electromagnetic interference (EMI) filter connected in series therewith, phase shifts in switching between the respective PFC channels can allow increase of EMI filter corner frequency allowing reduction of size and cost of the EMI filter at some switching frequencies. Asymmetrical phase shifts (other than 360°/m) such as 360°/2m and other phase shifts and variations in m allow increase of EMI filter corner frequency at switching frequencies where symmetrical, 360°/m phase shifts provide no benefit to EMI filter design by providing cancellation or partial cancellation of different harmonics of the switching noise; which cancellation may be arranged to be complementary to the EMI filter function at more than one peak of the noise spectrum. (Such asymmetrical phase shifts do not significantly increase ripple and consequent switching noise).
    Type: Application
    Filed: August 6, 2007
    Publication date: October 2, 2008
    Inventors: Chuanyun Wang, Ming Xu, Fred C. Lee