Patents by Inventor Chuang-Han Hsieh
Chuang-Han Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240413199Abstract: A method for fabricating a semiconductor device includes the steps of first forming a gate dielectric layer on a substrate, forming a gate material layer on the gate dielectric layer, patterning the gate material layer and the gate dielectric layer to form a gate structure, removing a portion of the gate dielectric layer, forming a spacer adjacent to the gate structure and at the same time forming an air gap between the gate dielectric layer and the spacer, and then forming a source/drain region adjacent to two sides of the spacer.Type: ApplicationFiled: August 22, 2024Publication date: December 12, 2024Applicant: UNITED MICROELECTRONICS CORP.Inventors: Zhi-Cheng Lee, Chuang-Han Hsieh, Kai-Lin Lee
-
Publication number: 20240413200Abstract: A method for fabricating a semiconductor device includes the steps of first forming a gate dielectric layer on a substrate, forming a gate material layer on the gate dielectric layer, patterning the gate material layer and the gate dielectric layer to form a gate structure, removing a portion of the gate dielectric layer, forming a spacer adjacent to the gate structure and at the same time forming an air gap between the gate dielectric layer and the spacer, and then forming a source/drain region adjacent to two sides of the spacer.Type: ApplicationFiled: August 22, 2024Publication date: December 12, 2024Applicant: UNITED MICROELECTRONICS CORP.Inventors: Zhi-Cheng Lee, Chuang-Han Hsieh, Kai-Lin Lee
-
Patent number: 12107121Abstract: A method for fabricating a semiconductor device includes the steps of first forming a gate dielectric layer on a substrate, forming a gate material layer on the gate dielectric layer, patterning the gate material layer and the gate dielectric layer to form a gate structure, removing a portion of the gate dielectric layer, forming a spacer adjacent to the gate structure and at the same time forming an air gap between the gate dielectric layer and the spacer, and then forming a source/drain region adjacent to two sides of the spacer.Type: GrantFiled: November 1, 2021Date of Patent: October 1, 2024Assignee: UNITED MICROELECTRONICS CORP.Inventors: Zhi-Cheng Lee, Chuang-Han Hsieh, Kai-Lin Lee
-
Publication number: 20240047554Abstract: A manufacturing method of a semiconductor device includes the following steps. A III-V compound barrier layer is formed on a III-V compound semiconductor layer. A protection layer is formed on the III-V compound barrier layer. An opening is formed penetrating through the protection layer in a vertical direction and exposing a part of the III-V compound barrier layer. A p-type doped III-V compound material is formed in the opening. A patterned barrier layer is formed on the p-type doped III-V compound material. A contact area between the patterned barrier layer and the p-type doped III-V compound material is less than an area of a top surface of the p-type doped III-V compound material.Type: ApplicationFiled: August 30, 2022Publication date: February 8, 2024Applicant: UNITED MICROELECTRONICS CORP.Inventors: Zhi-Cheng Lee, Huai-Tzu Chiang, Chuang-Han Hsieh, Kai-Lin Lee
-
Publication number: 20240021702Abstract: An HEMT includes a first III-V compound layer, a second III-V compound layer, and a III-V compound cap layer. The second III-V compound layer is disposed on the first III-V compound layer. The III-V compound cap layer covers and contacts the second III-V compound layer. The composition of the III-V compound cap layer and the second III-V compound layer are different from each other. A first opening is disposed in the III-V compound cap layer. A first insulating layer includes two first insulating parts and two second insulating parts. The two first insulating parts cover a top surface of the III-V compound cap layer, and the two second insulating parts respectively contact two sidewalls of the first opening. A second opening is disposed between the two first insulating parts and between the two second insulating parts. A gate electrode is disposed in the second opening.Type: ApplicationFiled: August 11, 2022Publication date: January 18, 2024Applicant: UNITED MICROELECTRONICS CORP.Inventors: Zhi-Cheng Lee, Chuang-Han Hsieh, Huai-Tzu Chiang, Kai-Lin Lee
-
Publication number: 20230402537Abstract: A high electron mobility transistor (HEMT) device includes a substrate, a channel layer, a source, a drain, a buffer layer, and a plurality of amorphous regions. The channel layer is located above the substrate. The source is located on the channel layer. The drain is located on the channel layer. The buffer layer is located between the substrate and the channel layer. The plurality of amorphous regions are located in the buffer layer below the source and the drain.Type: ApplicationFiled: July 13, 2022Publication date: December 14, 2023Applicant: United Microelectronics Corp.Inventors: Huai-Tzu Chiang, Kai Lin Lee, Zhi-Cheng Lee, Chuang-Han Hsieh
-
Patent number: 11764174Abstract: A semiconductor structure including a substrate, a dielectric layer, a first conductive layer, and a passivation layer is provided. The dielectric layer is disposed on the substrate. The first conductive layer is disposed on the dielectric layer. The passivation layer is disposed on the first conductive layer and the dielectric layer. The passivation layer includes a first upper surface and a second upper surface. The first upper surface is located above a top surface of the first conductive layer. The second upper surface is located on one side of the first conductive layer. A height of the first upper surface is higher than a height of the second upper surface. The height of the second upper surface is lower than or equal to a height of a lower surface of the first conductive layer located between a top surface of the dielectric layer and the first conductive layer.Type: GrantFiled: November 23, 2021Date of Patent: September 19, 2023Assignee: United Microelectronics Corp.Inventors: Chun-Chi Huang, Hui-Lung Chou, Chuang-Han Hsieh, Yung-Feng Lin, Shin-Chi Chen
-
Publication number: 20230136978Abstract: A semiconductor structure including a substrate, a dielectric layer, a first conductive layer, and a passivation layer is provided. The dielectric layer is disposed on the substrate. The first conductive layer is disposed on the dielectric layer. The passivation layer is disposed on the first conductive layer and the dielectric layer. The passivation layer includes a first upper surface and a second upper surface. The first upper surface is located above a top surface of the first conductive layer. The second upper surface is located on one side of the first conductive layer. A height of the first upper surface is higher than a height of the second upper surface. The height of the second upper surface is lower than or equal to a height of a lower surface of the first conductive layer located between a top surface of the dielectric layer and the first conductive layer.Type: ApplicationFiled: November 23, 2021Publication date: May 4, 2023Applicant: United Microelectronics Corp.Inventors: Chun-Chi Huang, Hui-Lung Chou, Chuang-Han Hsieh, Yung-Feng Lin, Shin-Chi Chen
-
Publication number: 20230102936Abstract: A method for fabricating a semiconductor device includes the steps of first forming a gate dielectric layer on a substrate, forming a gate material layer on the gate dielectric layer, patterning the gate material layer and the gate dielectric layer to form a gate structure, removing a portion of the gate dielectric layer, forming a spacer adjacent to the gate structure and at the same time forming an air gap between the gate dielectric layer and the spacer, and then forming a source/drain region adjacent to two sides of the spacer.Type: ApplicationFiled: November 1, 2021Publication date: March 30, 2023Applicant: UNITED MICROELECTRONICS CORP.Inventors: Zhi-Cheng Lee, Chuang-Han Hsieh, Kai-Lin Lee
-
Patent number: 10629734Abstract: A method of fabricating a fin structure with tensile stress includes providing a structure divided into an N-type transistor region and a P-type transistor region. Next, two first trenches and two second trenches are formed in the substrate. The first trenches define a fin structure. The second trenches segment the first trenches and the fin. Later, a flowable chemical vapor deposition is performed to form a silicon oxide layer filling the first trenches and the second trenches. Then, a patterned mask is formed only within the N-type transistor region. The patterned mask only covers the silicon oxide layer in the second trenches. Subsequently, part of the silicon oxide layer is removed to make the exposed silicon oxide layer lower than the top surface of the fin structure by taking the patterned mask as a mask. Finally, the patterned mask is removed.Type: GrantFiled: January 18, 2019Date of Patent: April 21, 2020Assignee: UNITED MICROELECTRONICS CORP.Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Wei-Jen Chen, Ting-Hsuan Kang, Ren-Yu He, Hung-Wen Huang, Chi-Hsiao Chen, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
-
Publication number: 20190172949Abstract: A method of fabricating a fin structure with tensile stress includes providing a structure divided into an N-type transistor region and a P-type transistor region. Next, two first trenches and two second trenches are formed in the substrate. The first trenches define a fin structure. The second trenches segment the first trenches and the fin. Later, a flowable chemical vapor deposition is performed to form a silicon oxide layer filling the first trenches and the second trenches. Then, a patterned mask is formed only within the N-type transistor region. The patterned mask only covers the silicon oxide layer in the second trenches. Subsequently, part of the silicon oxide layer is removed to make the exposed silicon oxide layer lower than the top surface of the fin structure by taking the patterned mask as a mask. Finally, the patterned mask is removed.Type: ApplicationFiled: January 18, 2019Publication date: June 6, 2019Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Wei-Jen Chen, Ting-Hsuan Kang, Ren-Yu He, Hung-Wen Huang, Chi-Hsiao Chen, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
-
Patent number: 10229995Abstract: A method of fabricating a fin structure with tensile stress includes providing a structure divided into an N-type transistor region and a P-type transistor region. Next, two first trenches and two second trenches are formed in the substrate. The first trenches define a fin structure. The second trenches segment the first trenches and the fin. Later, a flowable chemical vapor deposition is performed to form a silicon oxide layer filling the first trenches and the second trenches. Then, a patterned mask is formed only within the N-type transistor region. The patterned mask only covers the silicon oxide layer in the second trenches. Subsequently, part of the silicon oxide layer is removed to make the exposed silicon oxide layer lower than the top surface of the fin structure by taking the patterned mask as a mask. Finally, the patterned mask is removed.Type: GrantFiled: August 4, 2017Date of Patent: March 12, 2019Assignee: UNITED MICROELECTRONICS CORP.Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Wei-Jen Chen, Ting-Hsuan Kang, Ren-Yu He, Hung-Wen Huang, Chi-Hsiao Chen, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
-
Publication number: 20190027602Abstract: A method of fabricating a fin structure with tensile stress includes providing a structure divided into an N-type transistor region and a P-type transistor region. Next, two first trenches and two second trenches are formed in the substrate. The first trenches define a fin structure. The second trenches segment the first trenches and the fin. Later, a flowable chemical vapor deposition is performed to form a silicon oxide layer filling the first trenches and the second trenches. Then, a patterned mask is formed only within the N-type transistor region. The patterned mask only covers the silicon oxide layer in the second trenches. Subsequently, part of the silicon oxide layer is removed to make the exposed silicon oxide layer lower than the top surface of the fin structure by taking the patterned mask as a mask. Finally, the patterned mask is removed.Type: ApplicationFiled: August 4, 2017Publication date: January 24, 2019Inventors: Kai-Lin Lee, Zhi-Cheng Lee, Wei-Jen Chen, Ting-Hsuan Kang, Ren-Yu He, Hung-Wen Huang, Chi-Hsiao Chen, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
-
Publication number: 20180358453Abstract: The present invention provides a method of making a tunneling effect transistor (TFET), the method includes: a substrate is provided, having a fin structure disposed thereon, the fin structure includes a first conductive type, a dielectric layer is then formed on the substrate and on the fin structure, a gate trench is formed in the dielectric layer, and a first work function metal layer is formed in the gate trench, the first work function metal layer defines at least a left portion, a right portion and a central portion, an etching process is performed to remove the central portion of the first work function metal layer, and to form a recess between the left portion and the right portion of the first work function metal layer, afterwards, a second work function metal layer is formed and filled in the recess.Type: ApplicationFiled: July 6, 2017Publication date: December 13, 2018Inventors: Hung-Wen Huang, Kai-Lin Lee, Ren-Yu He, Chi-Hsiao Chen, Ting-Hsuan Kang, Hao-Hsiang Yang, An-Shih Shih, Chuang-Han Hsieh
-
Patent number: 8860224Abstract: A device includes a top metal layer; a UTM line over the top metal layer and having a first thickness; and a passivation layer over the UTM line and having a second thickness. A ratio of the second thickness to the first thickness is less than about 0.33.Type: GrantFiled: February 25, 2011Date of Patent: October 14, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yu-Wen Chen, Chuang-Han Hsieh, Kun-Yu Lin, Kuan-Chi Tsai
-
Publication number: 20120217641Abstract: A device includes a top metal layer; a UTM line over the top metal layer and having a first thickness; and a passivation layer over the UTM line and having a second thickness. A ratio of the second thickness to the first thickness is less than about 0.33.Type: ApplicationFiled: February 25, 2011Publication date: August 30, 2012Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yu-Wen Chen, Chuang-Han Hsieh, Kun-Yu Lin, Kuan-Chi Tsai