Patents by Inventor Chuangjie Zhou

Chuangjie Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11189696
    Abstract: The disclosure provides a method for preparing a self-aligned surface channel field effect transistor, and provides a power device. The method includes the following steps: depositing a first metal mask layer; preparing a first photoresist layer; forming a source area pattern and a drain area pattern; depositing a source metal layer and a drain metal layer on the source area pattern and the drain area pattern; peeling off and removing the first photoresist layer; depositing a second metal mask layer; preparing a second photoresist layer, and forming at least one gate area pattern closer toward the source metal layer by performing exposure and development; removing the first metal mask layer and the second metal mask layer between the source metal layer and the drain metal layer by a wet corrosion; depositing a gate metal layer on the gate area pattern; and peeling off and removing the second photoresist layer.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: November 30, 2021
    Assignee: THE 13TH RESEARCH INSTITUTE OF CHINA ELECTRONICS
    Inventors: Yuangang Wang, Yuanjie Lv, Zhihong Feng, Cui Yu, Chuangjie Zhou, Zezhao He, Xubo Song, Shixiong Liang
  • Patent number: 10985258
    Abstract: Disclosed are a preparation method for a diamond-based field effect transistor and a field effect transistor, relating to the technical field of semi-conductors.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: April 20, 2021
    Assignee: The 13th Research Institute of China Electronics Technology Group Corporation
    Inventors: Zhihong Feng, Jingjing Wang, Cui Yu, Chuangjie Zhou, Jianchao Guo, Zezhao He, Qingbin Liu, Xuedong Gao
  • Publication number: 20210066471
    Abstract: Disclosed are a preparation method for a diamond-based field effect transistor and a field effect transistor, relating to the technical field of semi-conductors.
    Type: Application
    Filed: November 6, 2017
    Publication date: March 4, 2021
    Inventors: Zhihong FENG, Jingjing WANG, Cui YU, Chuangjie ZHOU, Jianchao GUO, Zezhao HE, Qingbin LIU, Xuedong GAO
  • Publication number: 20200373390
    Abstract: The disclosure provides a method for preparing a self-aligned surface channel field effect transistor, and provides a power device. The method includes the following steps: depositing a first metal mask layer; preparing a first photoresist layer; forming a source area pattern and a drain area pattern; depositing a source metal layer and a drain metal layer on the source area pattern and the drain area pattern; peeling off and removing the first photoresist layer; depositing a second metal mask layer; preparing a second photoresist layer, and forming at least one gate area pattern closer toward the source metal layer by performing exposure and development; removing the first metal mask layer and the second metal mask layer between the source metal layer and the drain metal layer by a wet corrosion; depositing a gate metal layer on the gate area pattern; and peeling off and removing the second photoresist layer.
    Type: Application
    Filed: March 28, 2019
    Publication date: November 26, 2020
    Inventors: Yuangang WANG, Yuanjie LV, Zhihong FENG, Cui YU, Chuangjie ZHOU, Zezhao HE, Xubo SONG, Shixiong LIANG
  • Patent number: 10804104
    Abstract: The present application discloses a semiconductor device and a method for forming a p-type conductive channel in a diamond using an abrupt heterojunction, which pertain to the technical field of fabrication of semiconductor devices. The method includes: forming a diamond layer on a substrate; forming one or multiple layers of a heterogeneous elementary substance or compound having an acceptor characteristic on an upper surface of the diamond layer; forming a heterojunction at an interface between the diamond layer and an acceptor layer; forming two-dimensional hole gas at one side of the diamond layer with a distance of 10 nm-20 nm away from the heterojunction; and using the two-dimensional hole gas as a p-type conductive channel. The method enables a concentration and a mobility of carriers to maintain stable at a temperature range of 0° C.-1000° C., thereby realizing normal operation of the diamond device at high temperature environment.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: October 13, 2020
    Assignee: The 13th Research Institute Of China Electronics Technology
    Inventors: Jingjing Wang, Zhihong Feng, Cui Yu, Chuangjie Zhou, Qingbin Liu, Zezhao He
  • Patent number: 10388751
    Abstract: The present application discloses a semiconductor device and a method for forming an n-type conductive channel in a diamond using a heterojunction, which pertain to the technical field of fabrication of semiconductor devices. The method comprises: forming a diamond layer on a substrate; and depositing a ternary compound having a donor characteristic and graded components on an upper surface of the diamond layer to form a first donor layer, forming a graded heterojunction at an interface between the diamond layer and the first donor layer, forming two-dimensional electron gas at one side of the diamond layer adjacent to the graded heterojunction, and using the two-dimensional electron gas as the n-type conductive channel. The method enables a concentration and a mobility of carriers in the n-type diamond channel to reach 1013 cm?2 and 2000 cm2/V·s respectively.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: August 20, 2019
    Assignee: The 13ᵗʰ Research Institute Of China Electronics Technology Group Corporation
    Inventors: Jingjing Wang, Zhihong Feng, Cui Yu, Chuangjie Zhou, Qingbin Liu, Zezhao He
  • Publication number: 20190115214
    Abstract: The present application discloses a semiconductor device and a method for forming a p-type conductive channel in a diamond using an abrupt heterojunction, which pertain to the technical field of fabrication of semiconductor devices. The method includes: forming a diamond layer on a substrate; forming one or multiple layers of a heterogeneous elementary substance or compound having an acceptor characteristic on an upper surface of the diamond layer; forming a heterojunction at an interface between the diamond layer and an acceptor layer; forming two-dimensional hole gas at one side of the diamond layer with a distance of 10 nm-20 nm away from the heterojunction; and using the two-dimensional hole gas as a p-type conductive channel. The method enables a concentration and a mobility of carriers to maintain stable at a temperature range of 0° C.-1000° C., thereby realizing normal operation of the diamond device at high temperature environment.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 18, 2019
    Inventors: Jingjing Wang, Zhihong Feng, Cui Yu, Chuangjie Zhou, Qingbin Liu, Zezhao He
  • Publication number: 20190115446
    Abstract: The present application discloses a semiconductor device and a method for forming an n-type conductive channel in a diamond using a heterojunction, which pertain to the technical field of fabrication of semiconductor devices. The method comprises: forming a diamond layer on a substrate; and depositing a ternary compound having a donor characteristic and graded components on an upper surface of the diamond layer to form a first donor layer, forming a graded heterojunction at an interface between the diamond layer and the first donor layer, forming two-dimensional electron gas at one side of the diamond layer adjacent to the graded heterojunction, and using the two-dimensional electron gas as the n-type conductive channel. The method enables a concentration and a mobility of carriers in the n-type diamond channel to reach 1013 cm?2 and 2000 cm2/V·s respectively.
    Type: Application
    Filed: October 27, 2017
    Publication date: April 18, 2019
    Inventors: Jingjing Wang, Zhihong Feng, Cui Yu, Chuangjie Zhou, Qingbin Liu, Zezhao He