Patents by Inventor Chuanxi YANG
Chuanxi YANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240332009Abstract: Exemplary methods of semiconductor processing may include forming a layer of silicon nitride on a semiconductor substrate. The layer of silicon nitride may be characterized by a first roughness. The methods may include performing a post-deposition treatment on the layer of silicon nitride. The methods may include reducing a roughness of the layer of silicon nitride such that the layer of silicon nitride may be characterized by a second roughness less than the first roughness.Type: ApplicationFiled: March 26, 2024Publication date: October 3, 2024Applicant: Applied Materials, Inc.Inventors: Qixin Shen, Chuanxi Yang, Hang Yu, Deenesh Padhi, Prashanthi Para, Miguel S. Fung, Rajesh Prasad, Fenglin Wang, Shan Tang, Kyu-Ha Shim
-
Publication number: 20240304437Abstract: Capacitor devices containing silicon boron nitride with high boron concentration are provided. In one or more examples, a capacitor device is provided and contains a stopper layer containing silicon boron nitride and disposed on a substrate, a dielectric layer disposed on the stopper layer, vias formed within the dielectric layer and the stopper layer, metal contacts disposed on bottoms of the vias, a nitride barrier layer containing a metal nitride material and disposed on walls of the vias and disposed on the metal contacts, and an oxide layer disposed within the vias on the nitride barrier layer, wherein the oxide layer contains one or more holes or voids formed therein. The silicon boron nitride contains about 18 atomic percent (at %) to about 50 at % of boron.Type: ApplicationFiled: April 29, 2024Publication date: September 12, 2024Inventors: Chuanxi YANG, Hang YU, Sanjay KAMATH, Deenesh PADHI, Honggun KIM, Euhngi LEE, Zubin HUANG, Diwakar N. KEDLAYA, Rui CHENG, Karthik JANAKIRAMAN
-
Patent number: 11935751Abstract: Exemplary deposition methods may include delivering a boron-containing precursor and a nitrogen-containing precursor to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the boron-containing precursor and the nitrogen-containing precursor. A flow rate ratio of the hydrogen-containing precursor to either of the boron-containing precursor or the nitrogen-containing precursor may be greater than or about 2:1. The methods may include forming a plasma of all precursors within the processing region of the semiconductor processing chamber. The methods may include depositing a boron-and-nitrogen material on a substrate disposed within the processing region of the semiconductor processing chamber.Type: GrantFiled: May 25, 2021Date of Patent: March 19, 2024Assignee: Applied Materials, Inc.Inventors: Siyu Zhu, Chuanxi Yang, Hang Yu, Deenesh Padhi, Yeonju Kwak, Jeong Hwan Kim, Qian Fu, Xiawan Yang
-
Publication number: 20240014039Abstract: Exemplary semiconductor processing methods may include providing an oxygen-containing precursor to a processing region of a semiconductor processing chamber. The methods may include forming a plasma of the oxygen-containing precursor to produce oxygen-containing plasma effluents. The methods may include contacting a substrate housed in the processing region with the oxygen-containing plasma effluents. The substrate may include a boron-and-nitrogen-containing material overlying a carbon-containing material. The boron-and-nitrogen-containing material comprises a plurality of openings. The methods may include etching the carbon-containing material.Type: ApplicationFiled: July 11, 2022Publication date: January 11, 2024Applicant: Applied Materials, Inc.Inventors: Jeong Hwan Kim, Yeonju Kwak, Qian Fu, Siyu Zhu, Chuanxi Yang, Hang Yu
-
Publication number: 20220415651Abstract: Memory devices and methods of forming memory devices are described. The memory devices comprise a silicon nitride hard mask layer on a ruthenium layer. Forming the silicon nitride hard mask layer on the ruthenium comprises pre-treating the ruthenium layer with a plasma to form an interface layer on the ruthenium layer; and forming a silicon nitride layer on the interface layer by plasma-enhanced chemical vapor deposition (PECVD). Pre-treating the ruthenium layer, in some embodiments, results in the interface layer having a reduced roughness and the memory device having a reduced resistivity compared to a memory device that does not include the interface layer.Type: ApplicationFiled: June 29, 2021Publication date: December 29, 2022Applicant: Applied Materials, Inc.Inventors: Qixin Shen, Chuanxi Yang, Hang Yu, Deenesh Padhi, Gill Yong Lee, Sung-Kwan Kang, Abdul Wahab Mohammed, Hailing Liu
-
Patent number: 11538677Abstract: Exemplary methods of semiconductor processing may include flowing a silicon-containing precursor, a nitrogen-containing precursor, and diatomic hydrogen into a processing region of a semiconductor processing chamber. A substrate may be housed within the processing region of the semiconductor processing chamber. The methods may also include forming a plasma of the silicon-containing precursor, the nitrogen-containing precursor, and the diatomic hydrogen. The plasma may be formed at a frequency above 15 MHz. The methods may also include depositing a silicon nitride material on the substrate.Type: GrantFiled: September 1, 2020Date of Patent: December 27, 2022Assignee: Applied Materials, Inc.Inventors: Chuanxi Yang, Hang Yu, Yu Yang, Chuan Ying Wang, Allison Yau, Xinhai Han, Sanjay G. Kamath, Deenesh Padhi
-
Publication number: 20220384189Abstract: Exemplary deposition methods may include delivering a boron-containing precursor and a nitrogen-containing precursor to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the boron-containing precursor and the nitrogen-containing precursor. A flow rate ratio of the hydrogen-containing precursor to either of the boron-containing precursor or the nitrogen-containing precursor may be greater than or about 2:1. The methods may include forming a plasma of all precursors within the processing region of the semiconductor processing chamber. The methods may include depositing a boron-and-nitrogen material on a substrate disposed within the processing region of the semiconductor processing chamber.Type: ApplicationFiled: May 25, 2021Publication date: December 1, 2022Applicant: Applied Materials, Inc.Inventors: Siyu Zhu, Chuanxi Yang, Hang Yu, Deenesh Padhi, Yeonju Kwak, Jeong Hwan Kim, Qian Fu, Xiawan Yang
-
Patent number: 11515145Abstract: Methods for forming a SiBN film comprising depositing a film on a feature on a substrate. The method comprises in a first cycle, depositing a SiB layer on a substrate in a chamber using a chemical vapor deposition process, the substrate having at least one feature thereon, the at least one feature comprising an upper surface, a bottom surface and sidewalls, the SiB layer formed on the upper surface, the bottom surface and the sidewalls. In a second cycle, the SiB layer is treated with a plasma comprising a nitrogen-containing gas to form a conformal SiBN film.Type: GrantFiled: September 11, 2020Date of Patent: November 29, 2022Assignee: Applied Materials, Inc.Inventors: Chuanxi Yang, Hang Yu, Deenesh Padhi
-
Publication number: 20220084809Abstract: Methods for forming a SiBN film comprising depositing a film on a feature on a substrate. The method comprises in a first cycle, depositing a SiB layer on a substrate in a chamber using a chemical vapor deposition process, the substrate having at least one feature thereon, the at least one feature comprising an upper surface, a bottom surface and sidewalls, the SiB layer formed on the upper surface, the bottom surface and the sidewalls. In a second cycle, the SiB layer is treated with a plasma comprising a nitrogen-containing gas to form a conformal SiBN film.Type: ApplicationFiled: September 11, 2020Publication date: March 17, 2022Applicant: Applied Materials, Inc.Inventors: Chuanxi Yang, Hang Yu, Deenesh Padhi
-
Publication number: 20220068630Abstract: Exemplary methods of semiconductor processing may include flowing a silicon-containing precursor, a nitrogen-containing precursor, and diatomic hydrogen into a processing region of a semiconductor processing chamber. A substrate may be housed within the processing region of the semiconductor processing chamber. The methods may also include forming a plasma of the silicon-containing precursor, the nitrogen-containing precursor, and the diatomic hydrogen. The plasma may be formed at a frequency above 15 MHz. The methods may also include depositing a silicon nitride material on the substrate.Type: ApplicationFiled: September 1, 2020Publication date: March 3, 2022Applicant: Applied Materials, Inc.Inventors: Chuanxi Yang, Hang Yu, Yu Yang, Chuan Ying Wang, Allison Yau, Xinhai Han, Sanjay G. Kamath, Deenesh Padhi
-
Publication number: 20210040607Abstract: Exemplary methods of forming semiconductor structures may include forming a silicon oxide layer from a silicon-containing precursor and an oxygen-containing precursor. The methods may include forming a silicon nitride layer from a silicon-containing precursor, a nitrogen-containing precursor, and an oxygen-containing precursor. The silicon nitride layer may be characterized by an oxygen concentration greater than or about 5 at. %. The methods may also include repeating the forming a silicon oxide layer and the forming a silicon nitride layer to produce a stack of alternating layers of silicon oxide and silicon nitride.Type: ApplicationFiled: August 6, 2020Publication date: February 11, 2021Applicant: Applied Materials, Inc.Inventors: Xinhai Han, Hang Yu, Kesong Hu, Kristopher Enslow, Masaki Ogata, Wenjiao Wang, Chuan Ying Wang, Chuanxi Yang, Joshua Maher, Phaik Lynn Leong, Qi En Teong, Alok Jain, Nagarajan Rajagopalan, Deenesh Padhi
-
Publication number: 20200211834Abstract: Methods for forming the silicon boron nitride layer are provided. The method includes positioning a substrate on a pedestal in a process region within a process chamber, heating a pedestal retaining the substrate, and introducing a first flow of a first process gas and a second flow of a second process gas to the process region. The first flow of the first process gas contains silane, ammonia, helium, nitrogen, argon, and hydrogen. The second flow of the second process gas contains diborane and hydrogen. The method also includes forming a plasma concurrently with the first flow of the first process gas and the second flow of the second process gas to the process region and exposing the substrate to the first process gas, the second process gas, and the plasma to deposit the silicon boron nitride layer on the substrate.Type: ApplicationFiled: December 23, 2019Publication date: July 2, 2020Inventors: Chuanxi YANG, Hang YU, Sanjay KAMATH, Deenesh PADHI, Honggun KIM, Euhngi LEE, Zubin HUANG, Diwakar N. KEDLAYA, Rui CHENG, Karthik JANAKIRAMAN