Patents by Inventor Chueh-Yu Wu

Chueh-Yu Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12239973
    Abstract: Sub-millimeter scale three-dimensional (3D) structures are disclosed with customizable chemical properties and/or functionality. The 3D structures are referred to as drop-carrier particles. The drop-carrier particles allow the selective association of one solution (i.e., a dispersed phased) with an interior portion of each of the drop-carrier particles, while a second non-miscible solution (i.e., a continuous phase) associates with an exterior portion of each of the drop-carrier particles due to the specific chemical and/or physical properties of the interior and exterior regions of the drop-carrier particles. The combined drop-carrier particle with the dispersed phase contained therein is referred to as a particle-drop. The selective association results in compartmentalization of the dispersed phase solution into sub-microliter-sized volumes contained in the drop-carrier particles. The compartmentalized volumes can be used for single-molecule assays as well as single-cell, and other single-entity assays.
    Type: Grant
    Filed: September 30, 2024
    Date of Patent: March 4, 2025
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dino Di Carlo, Chueh-Yu Wu
  • Patent number: 12233407
    Abstract: Sub-millimeter scale three-dimensional (3D) structures are disclosed with customizable chemical properties and/or functionality. The 3D structures are referred to as drop-carrier particles. The drop-carrier particles allow the selective association of one solution (i.e., a dispersed phased) with an interior portion of each of the drop-carrier particles, while a second non-miscible solution (i.e., a continuous phase) associates with an exterior portion of each of the drop-carrier particles due to the specific chemical and/or physical properties of the interior and exterior regions of the drop-carrier particles. The combined drop-carrier particle with the dispersed phase contained therein is referred to as a particle-drop. The selective association results in compartmentalization of the dispersed phase solution into sub-microliter-sized volumes contained in the drop-carrier particles. The compartmentalized volumes can be used for single-molecule assays as well as single-cell, and other single-entity assays.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: February 25, 2025
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dino Di Carlo, Chueh-Yu Wu
  • Publication number: 20250018386
    Abstract: Sub-millimeter scale three-dimensional (3D) structures are disclosed with customizable chemical properties and/or functionality. The 3D structures are referred to as drop-carrier particles. The drop-carrier particles allow the selective association of one solution (i.e., a dispersed phased) with an interior portion of each of the drop-carrier particles, while a second non-miscible solution (i.e., a continuous phase) associates with an exterior portion of each of the drop-carrier particles due to the specific chemical and/or physical properties of the interior and exterior regions of the drop-carrier particles. The combined drop-carrier particle with the dispersed phase contained therein is referred to as a particle-drop. The selective association results in compartmentalization of the dispersed phase solution into sub-microliter-sized volumes contained in the drop-carrier particles. The compartmentalized volumes can be used for single-molecule assays as well as single-cell, and other single-entity assays.
    Type: Application
    Filed: September 30, 2024
    Publication date: January 16, 2025
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dino Di Carlo, Chueh-Yu Wu
  • Publication number: 20230243859
    Abstract: A microfluidic chip can include a microfluidic network that comprises a port, one or more test volumes, and one or more channels through which fluid must flow from the port to the test volume(s). A crosslinkable material can also be disposed within the microfluidic network such that the crosslinkable material is flowable through the channel(s). The crosslinkable material of the microfluidic chip may be exposed to light and/or heat to crosslink the material within and thereby occlude the channel(s).
    Type: Application
    Filed: November 10, 2022
    Publication date: August 3, 2023
    Applicant: Pattern Bioscience, Inc.
    Inventor: Chueh-Yu WU
  • Publication number: 20230173479
    Abstract: Sub-millimeter scale three-dimensional (3D) structures are disclosed with customizable chemical properties and/or functionality. The 3D structures are referred to as drop-carrier particles. The drop-carrier particles allow the selective association of one solution (i.e., a dispersed phased) with an interior portion of each of the drop-carrier particles, while a second non-miscible solution (i.e., a continuous phase) associates with an exterior portion of each of the drop-carrier particles due to the specific chemical and/or physical properties of the interior and exterior regions of the drop-carrier particles. The combined drop-carrier particle with the dispersed phase contained therein is referred to as a particle-drop. The selective association results in compartmentalization of the dispersed phase solution into sub-microliter-sized volumes contained in the drop-carrier particles. The compartmentalized volumes can be used for single-molecule assays as well as single-cell, and other single-entity assays.
    Type: Application
    Filed: January 30, 2023
    Publication date: June 8, 2023
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dino Di Carlo, Chueh-Yu Wu
  • Patent number: 11590489
    Abstract: Sub-millimeter scale three-dimensional (3D) structures are disclosed with customizable chemical properties and/or functionality. The 3D structures are referred to as drop-carrier particles. The drop-carrier particles allow the selective association of one solution (i.e., a dispersed phased) with an interior portion of each of the drop-carrier particles, while a second non-miscible solution (i.e., a continuous phase) associates with an exterior portion of each of the drop-carrier particles due to the specific chemical and/or physical properties of the interior and exterior regions of the drop-carrier particles. The combined drop-carrier particle with the dispersed phase contained therein is referred to as a particle-drop. The selective association results in compartmentalization of the dispersed phase solution into sub-microliter-sized volumes contained in the drop-carrier particles. The compartmentalized volumes can be used for single-molecule assays as well as single-cell, and other single-entity assays.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: February 28, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dino Di Carlo, Chueh-Yu Wu
  • Publication number: 20220233413
    Abstract: An emulsion system includes a plurality of monodisperse particle-drops. Each particle-drop is formed by a single elongated drop-carrier particle disposed in an oil-based continuous phase, wherein the single elongated drop-carrier particle comprises an elongate body with an opening at one end thereof. The single elongated drop-carrier particle has a hydrophilic interior region containing an aqueous droplet and a hydrophobic exterior region. The aqueous droplet and/or a surface of the hydrophilic interior region may contain one or more reagents, analytes, labels, reporter molecules, and/or cells.
    Type: Application
    Filed: May 5, 2020
    Publication date: July 28, 2022
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dino Di Carlo, Chueh-Yu Wu, Andrea L. Bertozzi, Bao Wang, Joseph de Rutte, Kyung HA
  • Patent number: 11278881
    Abstract: Sub-millimeter scale three-dimensional (3D) structures are disclosed with customizable chemical properties and/or functionality. The 3D structures are referred to as drop-carrier particles. The drop-carrier particles allow the selective association of one solution (i.e., a dispersed phased) with an interior portion of each of the drop-carrier particles, while a second non-miscible solution (i.e., a continuous phase) associates with an exterior portion of each of the drop-carrier particles due to the specific chemical and/or physical properties of the interior and exterior regions of the drop-carrier particles. The combined drop-carrier particle with the dispersed phase contained therein is referred to as a particle-drop. The selective association results in compartmentalization of the dispersed phase solution into sub-microliter-sized volumes contained in the drop-carrier particles. The compartmentalized volumes can be used for single-molecule assays as well as single-cell, and other single-entity assays.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: March 22, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dino Di Carlo, Chueh-Yu Wu, Ghulam Destgeer, Mengxing Ouyang
  • Publication number: 20210354121
    Abstract: Sub-millimeter scale three-dimensional (3D) structures are disclosed with customizable chemical properties and/or functionality. The 3D structures are referred to as drop-carrier particles. The drop-carrier particles allow the selective association of one solution (i.e., a dispersed phased) with an interior portion of each of the drop-carrier particles, while a second non-miscible solution (i.e., a continuous phase) associates with an exterior portion of each of the drop-carrier particles due to the specific chemical and/or physical properties of the interior and exterior regions of the drop-carrier particles. The combined drop-carrier particle with the dispersed phase contained therein is referred to as a particle-drop. The selective association results in compartmentalization of the dispersed phase solution into sub-microliter-sized volumes contained in the drop-carrier particles. The compartmentalized volumes can be used for single-molecule assays as well as single-cell, and other single-entity assays.
    Type: Application
    Filed: July 28, 2021
    Publication date: November 18, 2021
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dino Di Carlo, Chueh-Yu Wu, Ghulam Destgeer, Mengxing Ouyang
  • Publication number: 20210292490
    Abstract: A method of forming three-dimensional shaped microparticles in a microfluidic device includes flowing a mixture of a monomer and photoinitiator in a microfluidic channel having a plurality of pillars disposed therein to define a flow stream having a pre-defined shape and temporarily stopping the same. One or more portions of the flow stream are polymerized by passing polymerizing light through one or more masks and onto the flow stream, the polymerization process forming a plurality of three-dimensional shaped microparticles. The three-dimensional shape of the microparticle may be geometrically complex by using non-rectangular 2D orthogonal shapes for the flow and/or masked light source. The microparticles may include protected regions on which cells can be adhered to and protected from shear forces. The flow stream is restarted to flush out the newly formed microparticles and prepare the device for the next cycle of particle formation.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dino Di Carlo, Chueh-Yu Wu
  • Patent number: 11060541
    Abstract: A method of forming three-dimensional shaped microparticles in a microfluidic device includes flowing a mixture of a monomer and photoinitiator in a microfluidic channel having a plurality of pillars disposed therein to define a flow stream having a pre-defined shape and temporarily stopping the same. One or more portions of the flow stream are polymerized by passing polymerizing light through one or more masks and onto the flow stream, the polymerization process forming a plurality of three-dimensional shaped microparticles. The three-dimensional shape of the microparticle may be geometrically complex by using non-rectangular 2D orthogonal shapes for the flow and/or masked light source. The microparticles may include protected regions on which cells can be adhered to and protected from shear forces. The flow stream is restarted to flush out the newly formed microparticles and prepare the device for the next cycle of particle formation.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: July 13, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dino Di Carlo, Chueh-Yu Wu
  • Publication number: 20190381497
    Abstract: Sub-millimeter scale three-dimensional (3D) structures are disclosed with customizable chemical properties and/or functionality. The 3D structures are referred to as drop-carrier particles. The drop-carrier particles allow the selective association of one solution (i.e., a dispersed phased) with an interior portion of each of the drop-carrier particles, while a second non-miscible solution (i.e., a continuous phase) associates with an exterior portion of each of the drop-carrier particles due to the specific chemical and/or physical properties of the interior and exterior regions of the drop-carrier particles. The combined drop-carrier particle with the dispersed phase contained therein is referred to as a particle-drop. The selective association results in compartmentalization of the dispersed phase solution into sub-microliter-sized volumes contained in the drop-carrier particles. The compartmentalized volumes can be used for single-molecule assays as well as single-cell, and other single-entity assays.
    Type: Application
    Filed: August 23, 2019
    Publication date: December 19, 2019
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dino Di Carlo, Chueh-Yu Wu, Ghulam Destgeer, Mengxing Ouyang
  • Publication number: 20180266452
    Abstract: A method of forming three-dimensional shaped microparticles in a microfluidic device includes flowing a mixture of a monomer and photoinitiator in a microfluidic channel having a plurality of pillars disposed therein to define a flow stream having a pre-defined shape and temporarily stopping the same. One or more portions of the flow stream are polymerized by passing polymerizing light through one or more masks and onto the flow stream, the polymerization process forming a plurality of three-dimensional shaped microparticles. The three-dimensional shape of the microparticle may be geometrically complex by using non-rectangular 2D orthogonal shapes for the flow and/or masked light source. The microparticles may include protected regions on which cells can be adhered to and protected from shear forces. The flow stream is restarted to flush out the newly formed microparticles and prepare the device for the next cycle of particle formation.
    Type: Application
    Filed: September 30, 2016
    Publication date: September 20, 2018
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dino Di Carlo, Chueh-Yu Wu
  • Patent number: 8887574
    Abstract: A measurement system for measuring a pressure of a fluid is provided. The measurement system includes a sensing module and a liquid electrical circuit. The sensing module includes a flexible film and a liquid electronic device. The flexible film has a first side and a second side opposite to the first side. The fluid is disposed on the first side of the flexible film, and the liquid electronic device is disposed on the second side of the flexible film. The flexible film converts the pressure of the fluid into a parameter of the liquid electronic device. The liquid electrical circuit is electrically coupled to the liquid electronic device. The liquid electronic device and the liquid electrical circuit output a measurement signal corresponding to the parameter in response to an applied electrical energy. A manufacture method of a measurement system is also provided.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: November 18, 2014
    Assignee: Academia Sinica
    Inventors: Yi-Chung Tung, Chueh-Yu Wu, Wei-Hao Liao
  • Publication number: 20130019688
    Abstract: A measurement system for measuring a pressure of a fluid is provided. The measurement system includes a sensing module and a liquid electrical circuit. The sensing module includes a flexible film and a liquid electronic device. The flexible film has a first side and a second side opposite to the first side. The fluid is disposed on the first side of the flexible film, and the liquid electronic device is disposed on the second side of the flexible film. The flexible film converts the pressure of the fluid into a parameter of the liquid electronic device. The liquid electrical circuit is electrically coupled to the liquid electronic device. The liquid electronic device and the liquid electrical circuit output a measurement signal corresponding to the parameter in response to an applied electrical energy. A manufacture method of a measurement system is also provided.
    Type: Application
    Filed: December 8, 2011
    Publication date: January 24, 2013
    Inventors: Yi-Chung TUNG, Chueh-Yu Wu, Wei-Hao Liao