Patents by Inventor Chui Lee

Chui Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12009391
    Abstract: A semiconductor device includes: a fin protruding above a substrate; source/drain regions over the fin; nanosheets between the source/drain regions; and a gate structure over the fin and between the source/drain regions, the gate structure including: a gate dielectric material around each of the nanosheets; a work function material around the gate dielectric material; a liner material around the work function material, where the liner material has a non-uniform thickness and is thicker at a first location between the nanosheets than at a second location along sidewalls of the nanosheets; and a gate electrode material around at least portions of the liner material.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: June 11, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Patent number: 12009264
    Abstract: A method includes forming isolation regions extending into a semiconductor substrate, and recessing the isolation regions. After the recessing, a portion of a semiconductor material between the isolation region protrudes higher than top surfaces of the isolation regions to form a semiconductor fin. The method further includes forming a gate stack, which includes forming a gate dielectric on sidewalls and a top surface of the semiconductor fin, and depositing a titanium nitride layer over the gate dielectric as a work-function layer. The titanium nitride layer is deposited at a temperature in a range between about 300° C. and about 400° C. A source region and a drain region are formed on opposing sides of the gate stack.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: June 11, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsin-Yi Lee, Ji-Cheng Chen, Cheng-Lung Hung, Weng Chang, Chi On Chui
  • Patent number: 12002714
    Abstract: A method of forming a semiconductor device includes forming a fin structure having a stack of alternating first semiconductor layers and second semiconductor layers over a substrate, the first semiconductor layers and the second semiconductor layers having different compositions, forming a dummy gate structure across the fin structure, forming gate spacers on opposite sidewalls of the dummy gate structure, respectively, removing the dummy gate structure to form a gate trench between the gate spacers, removing portions of the first semiconductor layers in the gate trench, such that the second semiconductor layers are suspended in the gate trench to serve as nanosheets, forming a first titanium nitride layer wrapping around the nanosheets, wherein an atomic ratio of titanium to nitrogen of the first titanium nitride layer is less than 1, and forming a metal fill layer over the first titanium nitride layer.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: June 4, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Kuan-Yu Wang, Cheng-Lung Hung, Chi-On Chui
  • Publication number: 20240177998
    Abstract: A device includes a first nanostructure; a second nanostructure over the first nanostructure; a high-k gate dielectric around the first nanostructure and the second nanostructure, the high-k gate dielectric having a first portion on a top surface of the first nanostructure and a second portion on a bottom surface of the second nanostructure; and a gate electrode over the high-k gate dielectric. The gate electrode comprises: a first work function metal around the first nanostructure and the second nanostructure, the first work function metal filling a region between the first portion of the high-k gate dielectric and the second portion of the high-k gate dielectric; and a tungsten layer over the first work function metal, the tungsten layer being free of fluorine.
    Type: Application
    Filed: February 7, 2024
    Publication date: May 30, 2024
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Publication number: 20240177996
    Abstract: A method includes forming a plurality of nanostructures over a substrate; etching the plurality of nanostructures to form recesses; forming source/drain regions in the recesses; removing first nanostructures of the plurality of nanostructures leaving second nanostructures of the plurality of nanostructures; depositing a gate dielectric over and around the second nanostructures; depositing a protective material over the gate dielectric; performing a fluorine treatment on the protective material; removing the protective material; depositing a first conductive material over the gate dielectric; and depositing a second conductive material over the first conductive
    Type: Application
    Filed: January 12, 2024
    Publication date: May 30, 2024
    Inventors: Hsin-Yi Lee, Mao-Lin Huang, Lung-Kun Chu, Huang-Lin Chao, Chi On Chui
  • Publication number: 20240170485
    Abstract: A semiconductor device includes a substrate, a pair of semiconductor fins, a dummy fin structure, a gate structure, a plurality of source/drain structures, a crystalline hard mask layer, and an amorphous hard mask layer. The pair of semiconductor fins extend upwardly from the substrate. The dummy fin structure extends upwardly above the substrate and is laterally between the pair of semiconductor fins. The gate structure extends across the pair of semiconductor fins and the dummy fin structure. The source/drain structures are above the pair of semiconductor fins and on either side of the gate structure. The crystalline hard mask layer extends upwardly from the dummy fin and has a U-shaped cross section. The amorphous hard mask layer is in the first hard mask layer, wherein the amorphous hard mask layer having an U-shaped cross section conformal to the U-shaped cross section of the crystalline hard mask layer.
    Type: Application
    Filed: February 1, 2024
    Publication date: May 23, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kun-Yu LEE, Chun-Yao WANG, Chi On CHUI
  • Publication number: 20240170536
    Abstract: A method of forming semiconductor devices having improved work function layers and semiconductor devices formed by the same are disclosed. In an embodiment, a method includes depositing a gate dielectric layer on a channel region over a semiconductor substrate; depositing a first p-type work function metal on the gate dielectric layer; performing an oxygen treatment on the first p-type work function metal; and after performing the oxygen treatment, depositing a second p-type work function metal on the first p-type work function metal.
    Type: Application
    Filed: January 29, 2024
    Publication date: May 23, 2024
    Inventors: Hsin-Yi Lee, Ji-Cheng Chen, Chi On Chui
  • Publication number: 20240161986
    Abstract: A switch device includes at least one spring, a sliding body and a circuit board. The at least one spring is configured to generate a switch signal corresponding to an inductance of the at least one spring, and includes a first spring portion and a second spring portion arranged along a first direction. The inductance is associated with a first interval between the first spring portion and the second spring portion. The sliding body is configured to move along the first direction to change the first interval. The circuit board is configured to receive the switch signal. The at least one spring is located between the sliding body and the circuit board.
    Type: Application
    Filed: September 2, 2023
    Publication date: May 16, 2024
    Inventors: Chunghui KANG, Chihkuo CHUI, Jui-Ling LEE
  • Publication number: 20240162303
    Abstract: A device includes a first nanostructure; a second nanostructure over the first nanostructure; a first high-k gate dielectric around the first nanostructure; a second high-k gate dielectric around the second nanostructure; and a gate electrode over the first and second high-k gate dielectrics. The gate electrode includes a first work function metal; a second work function metal over the first work function metal; and a first metal residue at an interface between the first work function metal and the second work function metal, wherein the first metal residue has a metal element that is different than a metal element of the first work function metal.
    Type: Application
    Filed: January 22, 2024
    Publication date: May 16, 2024
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Publication number: 20240153952
    Abstract: In an embodiment, a device includes: a channel region; a gate dielectric layer on the channel region; a first work function tuning layer on the gate dielectric layer, the first work function tuning layer including a n-type work function metal; a barrier layer on the first work function tuning layer; a second work function tuning layer on the barrier layer, the second work function tuning layer including a p-type work function metal, the p-type work function metal different from the n-type work function metal; and a fill layer on the second work function tuning layer.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 9, 2024
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Publication number: 20240154016
    Abstract: A device includes a first nanostructure; a second nanostructure over the first nanostructure; a first high-k gate dielectric disposed around the first nanostructure; a second high-k gate dielectric being disposed around the second nanostructure; and a gate electrode over the first high-k gate dielectric and the second high-k gate dielectric. A portion of the gate electrode between the first nanostructure and the second nanostructure comprises a first portion of a p-type work function metal filling an area between the first high-k gate dielectric and the second high-k gate dielectric.
    Type: Application
    Filed: January 17, 2024
    Publication date: May 9, 2024
    Inventors: Hsin-Yi Lee, Ji-Cheng Chen, Cheng-Lung Hung, Chi On Chui
  • Publication number: 20240145543
    Abstract: A semiconductor device includes source and drain regions, a channel region between the source and drain regions, and a gate structure over the channel region. The gate structure includes a gate dielectric over the channel region, a work function metal layer over the gate dielectric and comprising iodine, and a fill metal over the work function metal layer.
    Type: Application
    Filed: January 11, 2024
    Publication date: May 2, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsin-Yi LEE, Cheng-Lung HUNG, Chi On CHUI
  • Patent number: 11968838
    Abstract: A device includes a semiconductor substrate; a word line extending over the semiconductor substrate; a memory film extending along the word line, wherein the memory film contacts the word line; a channel layer extending along the memory film, wherein the memory film is between the channel layer and the word line; source lines extending along the memory film, wherein the memory film is between the source lines and the word line; bit lines extending along the memory film, wherein the memory film is between the bit lines and the word line; and isolation regions, wherein each isolation region is between a source line and a bit line, wherein each of the isolation regions includes an air gap and a seal extending over the air gap.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Chen Wang, Kai-Hsuan Lee, Sai-Hooi Yeong, Chi On Chui
  • Patent number: 11967504
    Abstract: A method includes removing a first dummy gate structure to form a recess around a first nanostructure and a second nanostructure; depositing a sacrificial layer in the recess with a flowable chemical vapor deposition (CVD); and patterning the sacrificial layer to leave a portion of the sacrificial layer between the first nanostructure and the second nanostructure. The method further include depositing a first work function metal in first recess; removing the first work function metal and the portion of the sacrificial layer from the recess; depositing a second work function metal in the recess, wherein the second work function metal is of an opposite type than the first work function metal; and depositing a fill metal over the second work function metal in the recess.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yi Lee, Jia-Ming Lin, Kun-Yu Lee, Chi On Chui
  • Patent number: 11955528
    Abstract: Semiconductor devices, FinFET devices and methods of forming the same are disclosed. One of the semiconductor devices includes a substrate and a gate strip disposed over the substrate. The gate strip includes a high-k layer disposed over the substrate, an N-type work function metal layer disposed over the high-k layer, and a barrier layer disposed over the N-type work function metal layer. The barrier layer includes at least one first film containing TiAlN, TaAlN or AlN.
    Type: Grant
    Filed: October 11, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Weng Chang, Chi-On Chui
  • Publication number: 20240113183
    Abstract: Methods for tuning effective work functions of gate electrodes in semiconductor devices and semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor device includes a channel region over a semiconductor substrate; a gate dielectric layer over the channel region; and a gate electrode over the gate dielectric layer, the gate electrode including a first work function metal layer over the gate dielectric layer, the first work function metal layer including aluminum (Al); a first work function tuning layer over the first work function metal layer, the first work function tuning layer including aluminum tungsten (AlW); and a fill material over the first work function tuning layer.
    Type: Application
    Filed: November 30, 2023
    Publication date: April 4, 2024
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Weng Chang, Chi On Chui
  • Patent number: 11948981
    Abstract: A method includes forming a dummy gate stack over a semiconductor region, forming epitaxial source/drain regions on opposite sides of the dummy gate stack, removing the dummy gate stack to form a trench, depositing a gate dielectric layer extending into the trench, and depositing a work-function layer over the gate dielectric layer. The work-function layer comprises a seam therein. A silicon-containing layer is deposited to fill the seam. A planarization process is performed to remove excess portions of the silicon-containing layer, the work-function layer, and the gate dielectric layer. Remaining portions of the silicon-containing layer, the work-function layer, and the gate dielectric layer form a gate stack.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Patent number: 11935754
    Abstract: A device includes a first nanostructure; a second nanostructure over the first nanostructure; a high-k gate dielectric around the first nanostructure and the second nanostructure, the high-k gate dielectric having a first portion on a top surface of the first nano structure and a second portion on a bottom surface of the second nanostructure; and a gate electrode over the high-k gate dielectric. The gate electrode comprises: a first work function metal around the first nanostructure and the second nanostructure, the first work function metal filling a region between the first portion of the high-k gate dielectric and the second portion of the high-k gate dielectric; and a tungsten layer over the first work function metal, the tungsten layer being free of fluorine.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Patent number: 11935937
    Abstract: A semiconductor device includes a fin protruding above a substrate; source/drain regions over the fin; nanosheets between the source/drain regions; and a gate structure over the fin and between the source/drain regions. The gate structure includes: a gate dielectric material around each of the nanosheets; a first liner material around the gate dielectric material; a work function material around the first liner material; a second liner material around the work function material; and a gate electrode material around at least portions of the second liner material.
    Type: Grant
    Filed: January 17, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Patent number: 11923360
    Abstract: A semiconductor device includes a substrate, a pair of semiconductor fins, a dummy fin structure, a gate structure, a plurality of source/drain structures, a crystalline hard mask layer, and an amorphous hard mask layer. The pair of semiconductor fins extend upwardly from the substrate. The dummy fin structure extends upwardly above the substrate and is laterally between the pair of semiconductor fins. The gate structure extends across the pair of semiconductor fins and the dummy fin structure. The source/drain structures are above the pair of semiconductor fins and on either side of the gate structure. The crystalline hard mask layer extends upwardly from the dummy fin and has an U-shaped cross section. The amorphous hard mask layer is in the first hard mask layer, wherein the amorphous hard mask layer having an U-shaped cross section conformal to the U-shaped cross section of the crystalline hard mask layer.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kun-Yu Lee, Chun-Yao Wang, Chi On Chui