Patents by Inventor Chun-An Kung

Chun-An Kung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240170506
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. The integrated chip includes a first pixel region and a second pixel region within a substrate. A first recess region is disposed along a back-side of the substrate within the first pixel region. The back-side of the substrate within the first pixel region is asymmetric about a center of the first pixel region in a cross-sectional view. A second recess region is disposed along the back-side of the substrate and within the second pixel region. The back-side of the substrate within the second pixel region is asymmetric about a center of the second pixel region in the cross-sectional view. The first recess region and the second recess region are substantially symmetric about a vertical line laterally between the first pixel region and the second pixel region.
    Type: Application
    Filed: February 1, 2024
    Publication date: May 23, 2024
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Kazuaki Hashimoto, Wei-Chieh Chiang, Cheng Yu Huang, Wen-Hau Wu, Chih-Kung Chang
  • Patent number: 11955245
    Abstract: A method and a system for mental index prediction are provided. The method includes the following steps. A plurality of images of a subject person are obtained. A plurality of emotion tags of the subject person in the images are analyzed. A plurality of integrated emotion tags in a plurality of predetermined time periods are calculated according to the emotion tags respectively corresponding to the images. A plurality of preferred features are determined according to the integrated emotion tags. A mental index prediction model is established according to the preferred features to predict a mental index according to the emotional index prediction model.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: April 9, 2024
    Assignees: Acer Incorporated, National Yang Ming Chiao Tung University
    Inventors: Chun-Hsien Li, Szu-Chieh Wang, Andy Ho, Liang-Kung Chen, Jun-Hong Chen, Li-Ning Peng, Tsung-Han Yang, Yun-Hsuan Chan, Tsung-Hsien Tsai
  • Publication number: 20240113143
    Abstract: Various embodiments of the present disclosure are directed towards an imaging device including a first image sensor element and a second image sensor element respectively comprising a pixel unit disposed within a semiconductor substrate. The first image sensor element is adjacent to the second image sensor element. A first micro-lens overlies the first image sensor element and is laterally shifted from a center of the pixel unit of the first image sensor element by a first lens shift amount. A second micro-lens overlies the second image sensor element and is laterally shifted from a center of the pixel unit of the second image sensor element by a second lens shift amount different from the first lens shift amount.
    Type: Application
    Filed: January 6, 2023
    Publication date: April 4, 2024
    Inventors: Cheng Yu Huang, Wen-Hau Wu, Chun-Hao Chuang, Keng-Yu Chou, Wei-Chieh Chiang, Chih-Kung Chang
  • Publication number: 20240103606
    Abstract: The present disclosure relates to systems and methods for real and virtual object interactions in augmented reality environments are disclosed. The system comprises areal object detection module to receive multiple image pixels and the corresponding depths of at least one initiative object, a real object recognition module to determine a shape, a position, and a movement of the initiative object; a virtual object display module to display a virtual target object, a collision module to determine whether the at least one initiative object collides into a virtual target object and, an interaction module for determining an action responding to an event based on at least one of an object recognition determination from the real object recognition module, a collision determination from the collision module, and a type of the virtual target object.
    Type: Application
    Filed: January 25, 2022
    Publication date: March 28, 2024
    Applicant: HES IP HOLDINGS, LLC
    Inventors: Yung-Chin HSIAO, Ya-Chun CHOU, Shan-Ni HSIEH, Chun-Hung CHO, Te-Jen KUNG, I-Chun YEH
  • Patent number: 11936418
    Abstract: A radar signal processing system with a self-interference cancelling function includes an analog front end (AFE) processor, an analog to digital converter (ADC), an adaptive interference canceller (AIC), and a digital to analog converter (DAC). The AFE processor receives an original input signal and generates an analog input signal. The ADC converts the analog input signal to a digital input signal. The AIC generates a digital interference signal digital interference signal by performing an adaptive interference cancellation process according to the digital input signal. The DAC converts the digital interference signal to an analog interference signal. Finally, the analog interference signal is fed back to the AFE and cancelled from the original input signal in the AFE processor while performing the front end process, reducing the interference of the static interference from the leaking of a close-by transmitter during the front end process.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: March 19, 2024
    Assignee: KAIKUTEK INC.
    Inventors: Mike Chun-Hung Wang, Chun-Hsuan Kuo, Mohammad Athar Khalil, Wen-Sheng Cheng, Chen-Lun Lin, Chin-Wei Kuo, Ming Wei Kung, Khoi Duc Le
  • Publication number: 20240088182
    Abstract: In some embodiments, an image sensor is provided. The image sensor includes a photodetector disposed in a semiconductor substrate. A wave guide filter having a substantially planar upper surface is disposed over the photodetector. The wave guide filter includes a light filter disposed in a light filter grid structure. The light filter includes a first material that is translucent and has a first refractive index. The light filter grid structure includes a second material that is translucent and has a second refractive index less than the first refractive index.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Chien Yu, Ting-Cheng Chang, Wen-Hau Wu, Chih-Kung Chang
  • Patent number: 11923386
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. The integrated chip includes a first photodetector disposed in a first pixel region of a semiconductor substrate and a second photodetector disposed in a second pixel region of the semiconductor substrate. The second photodetector is laterally separated from the first photodetector. A first diffuser is disposed along a back-side of the semiconductor substrate and over the first photodetector. A second diffuser is disposed along the back-side of the semiconductor substrate and over the second photodetector. A first midline of the first pixel region and a second midline of the second pixel region are both disposed laterally between the first diffuser and the second diffuser.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Kazuaki Hashimoto, Wei-Chieh Chiang, Cheng Yu Huang, Wen-Hau Wu, Chih-Kung Chang
  • Patent number: 11566994
    Abstract: In certain embodiments a device is provided for electrorotation flow. In certain embodiments the device comprises a microfluidic channel comprising a plurality of electrodes disposed to provide dielectrophoretic (DEP) forces that are perpendicular to hydrodynamic flows along the channel; and a fluid within the channel providing the hydrodynamic flow along the channel; wherein the device is configured to apply focusing voltages to the electrodes that provide an electric field minimum in the channel and that focus cells, particles, and/or molecules or molecular complexes within the channel; and where the device is configured to apply rotation-inducing voltages to the electrodes that induce rotation of the cells, particles, molecules and/or molecular complexes as they flow through the channel.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: January 31, 2023
    Assignee: The Regents of the University of California
    Inventors: Yu-Chun Kung, Tianxing Man, Pei-Yu E. Chiou
  • Publication number: 20220371013
    Abstract: Systems and methods for using microfluidic devices to concentrate cells, to perform buffer changes, to sort cells based on size, and/or to isolate particular types of cells in a rapid manner, are presented. Cells flow into a matrix of posts, wherein the posts are distributed along diagonal lines in the chamber. The cells are deflected in a lateral manner, towards a side of a chamber and are collected upon exiting the chamber.
    Type: Application
    Filed: August 4, 2022
    Publication date: November 24, 2022
    Inventor: Yu-Chun KUNG
  • Publication number: 20220356594
    Abstract: A plating apparatus for electroplating a wafer includes a housing defining a plating chamber for housing a plating solution. A voltage source of the apparatus has a first terminal having a first polarity and a second terminal having a second polarity different than the first polarity. The first terminal is electrically coupled to the wafer. An anode is within the plating chamber, and the second terminal is electrically coupled to the anode. A membrane support is within the plating chamber and over the anode. The membrane support defines apertures, wherein in a first zone of the membrane support a first aperture-area to surface-area ratio is a first ratio, and in a second zone of the membrane support a second aperture-area to surface-area ratio is a second ratio, different than the first ratio.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Che-Min LIN, Hung-San Lu, Chao-Lung Chen, Chao Yuan Chang, Chun-An Kung, Chin-Hsin Hsiao, Wen-Chun Hou, Szu-Hung Yang, Ping-Ching Jiang
  • Patent number: 11460477
    Abstract: What is described is a kit for preparing a liquid thromboplastin reagent for a prothrombin time assay. The kit simplifies and minimizes reagent preparation time and is stable for 2-5 years.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: October 4, 2022
    Assignee: INSTRUMENTATION LABORATORY COMPANY
    Inventors: Kevin M. Cawthern, Ralph E. Bottenus, Chun Kung
  • Patent number: 11426724
    Abstract: Systems and methods for using microfluidic devices to concentrate cells, to perform buffer changes, to sort cells based on size, and/or to isolate particular types of cells in a rapid manner, are presented. Cells flow into a matrix of posts, wherein the posts are distributed along diagonal lines in the chamber. The cells are deflected in a lateral manner, towards a side of a chamber and are collected upon exiting the chamber.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: August 30, 2022
    Assignee: NANOCAV, LLC
    Inventor: Yu-Chun Kung
  • Patent number: 11401624
    Abstract: A plating apparatus for electroplating a wafer includes a housing defining a plating chamber for housing a plating solution. A voltage source of the apparatus has a first terminal having a first polarity and a second terminal having a second polarity different than the first polarity. The first terminal is electrically coupled to the wafer. An anode is within the plating chamber, and the second terminal is electrically coupled to the anode. A membrane support is within the plating chamber and over the anode. The membrane support defines apertures, wherein in a first zone of the membrane support a first aperture-area to surface-area ratio is a first ratio, and in a second zone of the membrane support a second aperture-area to surface-area ratio is a second ratio, different than the first ratio.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: August 2, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Che-Min Lin, Hung-San Lu, Chao-Lung Chen, Chao Yuan Chang, Chun-An Kung, Chin-Hsin Hsiao, Wen-Chun Hou, Szu-Hung Yang, Ping-Ching Jiang
  • Publication number: 20220025540
    Abstract: A plating apparatus for electroplating a wafer includes a housing defining a plating chamber for housing a plating solution. A voltage source of the apparatus has a first terminal having a first polarity and a second terminal having a second polarity different than the first polarity. The first terminal is electrically coupled to the wafer. An anode is within the plating chamber, and the second terminal is electrically coupled to the anode. A membrane support is within the plating chamber and over the anode. The membrane support defines apertures, wherein in a first zone of the membrane support a first aperture-area to surface-area ratio is a first ratio, and in a second zone of the membrane support a second aperture-area to surface-area ratio is a second ratio, different than the first ratio.
    Type: Application
    Filed: July 22, 2020
    Publication date: January 27, 2022
    Inventors: Che-Min Lin, Hung-San Lu, Chao-Lung Chen, Chao Yuan Chang, Chun-An Kung, Chin-Hsin Hsiao, Wen-Chun Hou, Szu-Hung Yang, Ping-Ching Jiang
  • Patent number: 10967387
    Abstract: A 3-dimensional PDMS cell sorter having multiple passages in a PDMS layer that follow the same path in a DEP separation region and that are in fluid communication with each other within that region. The passages may differ in width transverse to the flow direction within the passages. Flat plates may sandwich the PDMS layer; each plate may have a planar electrode used to generate a DEP field within a sample fluid flowed within the passages. The DEP field may concentrate target cells or particulates within one of the passages within the DEP separation region. The passages may diverge after the DEP-separation region, leaving one passage with a high concentration of target cells or particulates. Techniques for manufacturing such structures, as well as other micro-fluidic structures, are also provided.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: April 6, 2021
    Assignee: The Regents of the University of California
    Inventors: Pei-Yu E. Chiou, Kuo-Wei Huang, Yu-Jui Fan, Yu-Chun Kung
  • Publication number: 20210080476
    Abstract: What is described is a kit for preparing a liquid thromboplastin reagent for a prothrombin time assay. The kit simplifies and minimizes reagent preparation time and is stable for 2-5 years.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 18, 2021
    Inventors: Kevin M. Cawthern, Ralph E. Bottenus, Chun Kung
  • Patent number: 10877052
    Abstract: What is described is a kit for preparing a liquid thromboplastin reagent for a prothrombin time assay. The kit simplifies and minimizes reagent preparation time and is stable for 2-5 years.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: December 29, 2020
    Assignee: Instrumentation Laboratory Company
    Inventors: Kevin M. Cawthern, Ralph E. Bottenus, Chun Kung
  • Publication number: 20200386666
    Abstract: In certain embodiments a device is provided for electrorotation flow. In certain embodiments the device comprises a microfluidic channel comprising a plurality of electrodes disposed to provide dielectrophoretic (DEP) forces that are perpendicular to hydrodynamic flows along the channel; and a fluid within the channel providing the hydrodynamic flow along the channel; wherein the device is configured to apply focusing voltages to the electrodes that provide an electric field minimum in the channel and that focus cells, particles, and/or molecules or molecular complexes within the channel; and where the device is configured to apply rotation-inducing voltages to the electrodes that induce rotation of the cells, particles, molecules and/or molecular complexes as they flow through the channel.
    Type: Application
    Filed: April 5, 2018
    Publication date: December 10, 2020
    Inventors: Yu-Chun Kung, Tianxing Man, Pei-Yu E. Chiou
  • Patent number: 10780413
    Abstract: Methods and devices for the formation and/or merging of droplets in microfluidic systems are provided. In certain embodiments a microfluidic droplet merger component is provided that comprises a central channel comprising a plurality of elements disposed and spaced to create a plurality of lateral passages that drain a carrier fluid out of a fluid stream comprising droplets of a first fluid contained in the carrier fluid; and a deformable lateral membrane valve disposed to control the width of said center channel.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: September 22, 2020
    Assignee: The Regents of the University of California
    Inventors: Yu-Chun Kung, Pei-Yu E. Chiou, Ting-Hsiang S. Wu, Yue Chen, Michael A. Teitell
  • Patent number: 10641274
    Abstract: An outer rotor type fan structure includes a stator assembly, an outer rotor assembly, a front lateral shielding sheet and an impeller. The stator assembly includes a stator core and a plurality of coils. The outer rotor assembly corresponds to and covers the stator assembly. The outer rotor assembly includes a plurality of magnets and a rotor yoke. The plurality of magnets is disposed corresponding to the plurality of coils. The front lateral shielding sheet is a metallic sheet, the front lateral shielding sheet is disposed between the stator assembly and the outer rotor assembly, and the front lateral shielding sheet corresponds to and covers the plurality of coils. The impeller includes a plurality of blades. The rotor yoke drives the plurality of blades rotating. Thereby, the outer rotor type fan structure can be shielded and the fan can operate properly.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: May 5, 2020
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Han-En Chien, Hung-Chi Chen, Meng-Yu Chen, Che-Hung Lin, Chao-Chun Kung