Patents by Inventor Chun-An Kung

Chun-An Kung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12211871
    Abstract: The present disclosure relates to an integrated chip including a substrate and a pixel. The pixel includes a photodetector. The photodetector is in the substrate. The integrated chip further includes a first inner trench isolation structure and an outer trench isolation structure that extend into the substrate. The first inner trench isolation structure laterally surrounds the photodetector in a first closed loop. The outer trench isolation structure laterally surrounds the first inner trench isolation structure along a boundary of the pixel in a second closed loop and is laterally separated from the first inner trench isolation structure. Further, the integrated chip includes a scattering structure that is defined, at least in part, by the first inner trench isolation structure and that is configured to increase an angle at which radiation impinges on the outer trench isolation structure.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: January 28, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu, Chih-Kung Chang
  • Publication number: 20240218344
    Abstract: An example composition that is liquid includes thrombin and a constituent that includes one or more of guanidine derivatives or one or more anticoagulants. The one or more guanidine derivative may include 1-methylguanidine, 1,1-dimethylguanidine, 1,1-diethylguanidine, or N-benzyl-N-methylguanidine. The one or more anticoagulants may include rivaroxaban, apixaban, edoxaban, betrixaban, or a factor Xa anticoagulant.
    Type: Application
    Filed: December 23, 2022
    Publication date: July 4, 2024
    Inventors: Zhenghua Cao, Chun Kung, Ralph Bottenus
  • Patent number: 11566994
    Abstract: In certain embodiments a device is provided for electrorotation flow. In certain embodiments the device comprises a microfluidic channel comprising a plurality of electrodes disposed to provide dielectrophoretic (DEP) forces that are perpendicular to hydrodynamic flows along the channel; and a fluid within the channel providing the hydrodynamic flow along the channel; wherein the device is configured to apply focusing voltages to the electrodes that provide an electric field minimum in the channel and that focus cells, particles, and/or molecules or molecular complexes within the channel; and where the device is configured to apply rotation-inducing voltages to the electrodes that induce rotation of the cells, particles, molecules and/or molecular complexes as they flow through the channel.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: January 31, 2023
    Assignee: The Regents of the University of California
    Inventors: Yu-Chun Kung, Tianxing Man, Pei-Yu E. Chiou
  • Publication number: 20220371013
    Abstract: Systems and methods for using microfluidic devices to concentrate cells, to perform buffer changes, to sort cells based on size, and/or to isolate particular types of cells in a rapid manner, are presented. Cells flow into a matrix of posts, wherein the posts are distributed along diagonal lines in the chamber. The cells are deflected in a lateral manner, towards a side of a chamber and are collected upon exiting the chamber.
    Type: Application
    Filed: August 4, 2022
    Publication date: November 24, 2022
    Inventor: Yu-Chun KUNG
  • Publication number: 20220356594
    Abstract: A plating apparatus for electroplating a wafer includes a housing defining a plating chamber for housing a plating solution. A voltage source of the apparatus has a first terminal having a first polarity and a second terminal having a second polarity different than the first polarity. The first terminal is electrically coupled to the wafer. An anode is within the plating chamber, and the second terminal is electrically coupled to the anode. A membrane support is within the plating chamber and over the anode. The membrane support defines apertures, wherein in a first zone of the membrane support a first aperture-area to surface-area ratio is a first ratio, and in a second zone of the membrane support a second aperture-area to surface-area ratio is a second ratio, different than the first ratio.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Che-Min LIN, Hung-San Lu, Chao-Lung Chen, Chao Yuan Chang, Chun-An Kung, Chin-Hsin Hsiao, Wen-Chun Hou, Szu-Hung Yang, Ping-Ching Jiang
  • Patent number: 11460477
    Abstract: What is described is a kit for preparing a liquid thromboplastin reagent for a prothrombin time assay. The kit simplifies and minimizes reagent preparation time and is stable for 2-5 years.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: October 4, 2022
    Assignee: INSTRUMENTATION LABORATORY COMPANY
    Inventors: Kevin M. Cawthern, Ralph E. Bottenus, Chun Kung
  • Patent number: 11426724
    Abstract: Systems and methods for using microfluidic devices to concentrate cells, to perform buffer changes, to sort cells based on size, and/or to isolate particular types of cells in a rapid manner, are presented. Cells flow into a matrix of posts, wherein the posts are distributed along diagonal lines in the chamber. The cells are deflected in a lateral manner, towards a side of a chamber and are collected upon exiting the chamber.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: August 30, 2022
    Assignee: NANOCAV, LLC
    Inventor: Yu-Chun Kung
  • Patent number: 11401624
    Abstract: A plating apparatus for electroplating a wafer includes a housing defining a plating chamber for housing a plating solution. A voltage source of the apparatus has a first terminal having a first polarity and a second terminal having a second polarity different than the first polarity. The first terminal is electrically coupled to the wafer. An anode is within the plating chamber, and the second terminal is electrically coupled to the anode. A membrane support is within the plating chamber and over the anode. The membrane support defines apertures, wherein in a first zone of the membrane support a first aperture-area to surface-area ratio is a first ratio, and in a second zone of the membrane support a second aperture-area to surface-area ratio is a second ratio, different than the first ratio.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: August 2, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Che-Min Lin, Hung-San Lu, Chao-Lung Chen, Chao Yuan Chang, Chun-An Kung, Chin-Hsin Hsiao, Wen-Chun Hou, Szu-Hung Yang, Ping-Ching Jiang
  • Publication number: 20220025540
    Abstract: A plating apparatus for electroplating a wafer includes a housing defining a plating chamber for housing a plating solution. A voltage source of the apparatus has a first terminal having a first polarity and a second terminal having a second polarity different than the first polarity. The first terminal is electrically coupled to the wafer. An anode is within the plating chamber, and the second terminal is electrically coupled to the anode. A membrane support is within the plating chamber and over the anode. The membrane support defines apertures, wherein in a first zone of the membrane support a first aperture-area to surface-area ratio is a first ratio, and in a second zone of the membrane support a second aperture-area to surface-area ratio is a second ratio, different than the first ratio.
    Type: Application
    Filed: July 22, 2020
    Publication date: January 27, 2022
    Inventors: Che-Min Lin, Hung-San Lu, Chao-Lung Chen, Chao Yuan Chang, Chun-An Kung, Chin-Hsin Hsiao, Wen-Chun Hou, Szu-Hung Yang, Ping-Ching Jiang
  • Patent number: 10967387
    Abstract: A 3-dimensional PDMS cell sorter having multiple passages in a PDMS layer that follow the same path in a DEP separation region and that are in fluid communication with each other within that region. The passages may differ in width transverse to the flow direction within the passages. Flat plates may sandwich the PDMS layer; each plate may have a planar electrode used to generate a DEP field within a sample fluid flowed within the passages. The DEP field may concentrate target cells or particulates within one of the passages within the DEP separation region. The passages may diverge after the DEP-separation region, leaving one passage with a high concentration of target cells or particulates. Techniques for manufacturing such structures, as well as other micro-fluidic structures, are also provided.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: April 6, 2021
    Assignee: The Regents of the University of California
    Inventors: Pei-Yu E. Chiou, Kuo-Wei Huang, Yu-Jui Fan, Yu-Chun Kung
  • Publication number: 20210080476
    Abstract: What is described is a kit for preparing a liquid thromboplastin reagent for a prothrombin time assay. The kit simplifies and minimizes reagent preparation time and is stable for 2-5 years.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 18, 2021
    Inventors: Kevin M. Cawthern, Ralph E. Bottenus, Chun Kung
  • Patent number: 10877052
    Abstract: What is described is a kit for preparing a liquid thromboplastin reagent for a prothrombin time assay. The kit simplifies and minimizes reagent preparation time and is stable for 2-5 years.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: December 29, 2020
    Assignee: Instrumentation Laboratory Company
    Inventors: Kevin M. Cawthern, Ralph E. Bottenus, Chun Kung
  • Publication number: 20200386666
    Abstract: In certain embodiments a device is provided for electrorotation flow. In certain embodiments the device comprises a microfluidic channel comprising a plurality of electrodes disposed to provide dielectrophoretic (DEP) forces that are perpendicular to hydrodynamic flows along the channel; and a fluid within the channel providing the hydrodynamic flow along the channel; wherein the device is configured to apply focusing voltages to the electrodes that provide an electric field minimum in the channel and that focus cells, particles, and/or molecules or molecular complexes within the channel; and where the device is configured to apply rotation-inducing voltages to the electrodes that induce rotation of the cells, particles, molecules and/or molecular complexes as they flow through the channel.
    Type: Application
    Filed: April 5, 2018
    Publication date: December 10, 2020
    Inventors: Yu-Chun Kung, Tianxing Man, Pei-Yu E. Chiou
  • Patent number: 10780413
    Abstract: Methods and devices for the formation and/or merging of droplets in microfluidic systems are provided. In certain embodiments a microfluidic droplet merger component is provided that comprises a central channel comprising a plurality of elements disposed and spaced to create a plurality of lateral passages that drain a carrier fluid out of a fluid stream comprising droplets of a first fluid contained in the carrier fluid; and a deformable lateral membrane valve disposed to control the width of said center channel.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: September 22, 2020
    Assignee: The Regents of the University of California
    Inventors: Yu-Chun Kung, Pei-Yu E. Chiou, Ting-Hsiang S. Wu, Yue Chen, Michael A. Teitell
  • Patent number: 10641274
    Abstract: An outer rotor type fan structure includes a stator assembly, an outer rotor assembly, a front lateral shielding sheet and an impeller. The stator assembly includes a stator core and a plurality of coils. The outer rotor assembly corresponds to and covers the stator assembly. The outer rotor assembly includes a plurality of magnets and a rotor yoke. The plurality of magnets is disposed corresponding to the plurality of coils. The front lateral shielding sheet is a metallic sheet, the front lateral shielding sheet is disposed between the stator assembly and the outer rotor assembly, and the front lateral shielding sheet corresponds to and covers the plurality of coils. The impeller includes a plurality of blades. The rotor yoke drives the plurality of blades rotating. Thereby, the outer rotor type fan structure can be shielded and the fan can operate properly.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: May 5, 2020
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Han-En Chien, Hung-Chi Chen, Meng-Yu Chen, Che-Hung Lin, Chao-Chun Kung
  • Publication number: 20190210019
    Abstract: Systems and methods for using microfluidic devices to concentrate cells, to perform buffer changes, to sort cells based on size, and/or to isolate particular types of cells in a rapid manner, are presented. Cells flow into a matrix of posts, wherein the posts are distributed along diagonal lines in the chamber. The cells are deflected in a lateral manner, towards a side of a chamber and are collected upon exiting the chamber.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 11, 2019
    Inventor: Yu-Chun KUNG
  • Patent number: 10252269
    Abstract: Methods and devices are provided for focusing and/or sorting activated T cells. The device comprises a microfluidic channel comprising a plurality of electrodes arranged to provide dielectrophoretic (DEP) forces that are perpendicular to forces from hydrodynamic flows along the channel. The device may be configured to apply voltages to a plurality of electrodes in a first upper region of the microfluidic channel to focus the cells into a single flow, and to apply different voltages to a plurality of electrodes in a second downstream region of the microfluidic channel to sort cells based on size. The output of the microfluidic channel may diverge into multiple channels, wherein cells of various sorted sizes are directed into the appropriate output channel.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: April 9, 2019
    Assignees: NANTBIO, INC., NANOCAV, LLC
    Inventors: Yu-Chun Kung, Ting-Hsiang Wu, Peter Sieling, Kayvan Niazi
  • Publication number: 20190060861
    Abstract: Methods and devices for the formation and/or merging of droplets in microfluidic systems are provided. In certain embodiments a microfluidic droplet merger component is provided that comprises a central channel comprising a plurality of elements disposed and spaced to create a plurality of lateral passages that drain a carrier fluid out of a fluid stream comprising droplets of a first fluid contained in the carrier fluid; and a deformable lateral membrane valve disposed to control the width of said center channel.
    Type: Application
    Filed: August 28, 2018
    Publication date: February 28, 2019
    Inventors: Yu-Chun Kung, Pei-Yu E. Chiou, Ting-Hsiang S. Wu, Yue Chen, Michael A. Teitell
  • Patent number: 10071359
    Abstract: Methods and devices for the formation and/or merging of droplets in microfluidic systems are provided. In certain embodiments a microfluidic droplet merger component is provided that comprises a central channel comprising a plurality of elements disposed and spaced to create a plurality of lateral passages that drain a carrier fluid out of a fluid stream comprising droplets of a first fluid contained in the carrier fluid; and a deformable lateral membrane valve disposed to control the width of said center channel.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: September 11, 2018
    Assignee: The Regents of the University of California
    Inventors: Yu-Chun Kung, Pei-Yu E. Chiou, Ting-Hsiang S. Wu, Yue Chen, Michael A. Teitell
  • Publication number: 20180141048
    Abstract: Methods and devices are provided for focusing and/or sorting activated T cells. The device comprises a microfluidic channel comprising a plurality of electrodes arranged to provide dielectrophoretic (DEP) forces that are perpendicular to forces from hydrodynamic flows along the channel. The device may be configured to apply voltages to a plurality of electrodes in a first upper region of the microfluidic channel to focus the cells into a single flow, and to apply different voltages to a plurality of electrodes in a second downstream region of the microfluidic channel to sort cells based on size. The output of the microfluidic channel may diverge into multiple channels, wherein cells of various sorted sizes are directed into the appropriate output channel.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 24, 2018
    Inventors: Yu-Chun KUNG, Ting-Hsiang WU, Peter SIELING, Kayvan NIAZI