Patents by Inventor Chun-Chi Ke

Chun-Chi Ke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11289409
    Abstract: A method for fabricating a carrier-free semiconductor package includes: half-etching a metal carrier to form a plurality of recess grooves and a plurality of metal studs each serving in position as a solder pad or a die pad; filing each of the recess grooves with a first encapsulant; forming on the metal studs an antioxidant layer such as a silver plating layer or an organic solderable protection layer; and performing die-bonding, wire-bonding and molding processes respectively to form a second encapsulant encapsulating the chip. The recess grooves are filled with the first encapsulant to enhance the adhesion between the first encapsulant and the metal carrier, thereby solving the conventional problem of having a weak and pliable copper plate and avoiding transportation difficulty. The invention eliminates the use of costly metals as an etching resist layer to reduce fabrication cost, and further allows conductive traces to be flexibly disposed on the metal carrier to enhance electrical connection quality.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: March 29, 2022
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Yueh-Ying Tsai, Fu-Di Tang, Chien-Ping Huang, Chun-Chi Ke
  • Patent number: 11195812
    Abstract: A method for fabricating an electronic package is provided. A plurality of packaging structures are provided, each of which having a carrier and at least one electronic component disposed on the carrier. The plurality of packaging structures are disposed on a supporting plate. An encapsulation layer is formed on the supporting plate and encapsulates the plurality of packaging structures. Even if there are various types of electronic packages of different specifications in the market, the molds that the encapsulation layer uses can still be developed for a supporting plate of a certain specification. Therefore, the fabrication cost of the electronic package is reduced.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: December 7, 2021
    Assignee: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Hsin-Yi Liao, Cheng-Kai Chang, Bo-Hao Ma, Chun-Chi Ke
  • Publication number: 20210175196
    Abstract: A method for fabricating an electronic package is provided. A plurality of packaging structures are provided, each of which having a carrier and at least one electronic component disposed on the carrier. The plurality of packaging structures are disposed on a supporting plate. An encapsulation layer is formed on the supporting plate and encapsulates the plurality of packaging structures. Even if there are various types of electronic packages of different specifications in the market, the molds that the encapsulation layer uses can still be developed for a supporting plate of a certain specification. Therefore, the fabrication cost of the electronic package is reduced.
    Type: Application
    Filed: March 17, 2020
    Publication date: June 10, 2021
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Hsin-Yi Liao, Cheng-Kai Chang, Bo-Hao Ma, Chun-Chi Ke
  • Patent number: 10833394
    Abstract: An electronic package and a method for fabricating the same are provided. An antenna frame, a first electronic component, and a second electronic component electrically connected to the antenna frame are disposed on a lower side of a carrying structure. An antenna structure is disposed on an upper side of the carrying structure and is electrically connected to the first electronic component. Therefore, two different types of antennas are integrated into an identical electronic package. Such the electronic package bonded to a circuit can transmit signals with two different wavelengths, even if the electronic package does not have any area increased.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: November 10, 2020
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Wen-Jung Tsai, Mao-Hua Yeh, Chih-Hsien Chiu, Ying-Chou Tsai, Chun-Chi Ke
  • Publication number: 20200235462
    Abstract: An electronic package and a method for fabricating the same are provided. An antenna frame, a first electronic component, and a second electronic component electrically connected to the antenna frame are disposed on a lower side of a carrying structure. An antenna structure is disposed on an upper side of the carrying structure and is electrically connected to the first electronic component. Therefore, two different types of antennas are integrated into an identical electronic package. Such the electronic package bonded to a circuit can transmit signals with two different wavelengths, even if the electronic package does not have any area increased.
    Type: Application
    Filed: August 7, 2019
    Publication date: July 23, 2020
    Inventors: Wen-Jung Tsai, Mao-Hua Yeh, Chih-Hsien Chiu, Ying-Chou Tsai, Chun-Chi Ke
  • Publication number: 20200144167
    Abstract: A method for fabricating a carrier-free semiconductor package includes: half-etching a metal carrier to form a plurality of recess grooves and a plurality of metal studs each serving in position as a solder pad or a die pad; filing each of the recess grooves with a first encapsulant; forming on the metal studs an antioxidant layer such as a silver plating layer or an organic solderable protection layer; and performing die-bonding, wire-bonding and molding processes respectively to form a second encapsulant encapsulating the chip. The recess grooves are filled with the first encapsulant to enhance the adhesion between the first encapsulant and the metal carrier, thereby solving the conventional problem of having a weak and pliable copper plate and avoiding transportation difficulty. The invention eliminates the use of costly metals as an etching resist layer to reduce fabrication cost, and further allows conductive traces to be flexibly disposed on the metal carrier to enhance electrical connection quality.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: Yueh-Ying Tsai, Fu-Di Tang, Chien-Ping Huang, Chun-Chi Ke
  • Patent number: 10566271
    Abstract: A method for fabricating a carrier-free semiconductor package includes: half-etching a metal carrier to form a plurality of recess grooves and a plurality of metal studs each serving in position as a solder pad or a die pad; filing each of the recess grooves with a first encapsulant; forming on the metal studs an antioxidant layer such as a silver plating layer or an organic solderable protection layer; and performing die-bonding, wire-bonding and molding processes respectively to form a second encapsulant encapsulating the chip. The recess grooves are filled with the first encapsulant to enhance the adhesion between the first encapsulant and the metal carrier, thereby solving the conventional problem of having a weak and pliable copper plate and avoiding transportation difficulty. The invention eliminates the use of costly metals as an etching resist layer to reduce fabrication cost, and further allows conductive traces to be flexibly disposed on the metal carrier to enhance electrical connection quality.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: February 18, 2020
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Yueh-Ying Tsai, Fu-Di Tang, Chien-Ping Huang, Chun-Chi Ke
  • Patent number: 10192834
    Abstract: A semiconductor package is provided, including: a substrate; a first semiconductor element disposed on the substrate and having a first conductive pad grounded to the substrate; a conductive layer formed on the first semiconductor element and electrically connected to the substrate; a second semiconductor element disposed on the first semiconductor element through the conductive layer; and an encapsulant formed on the substrate and encapsulating the first and second semiconductor elements. Therefore, the first and second semiconductor elements are protected from electromagnetic interference (EMI) shielding with the conductive layer being connected to the grounding pad of the substrate. A fabrication method of the semiconductor package is also provided.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: January 29, 2019
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Fu-Tang Huang, Chun-Chi Ke
  • Patent number: 10074613
    Abstract: A semiconductor package is provided, including: a substrate having opposing first and second surfaces; a plurality of semiconductor components disposed on and electrically connected to the first surface; an encapsulant encapsulating the first surface and the semiconductor components and having at least one first groove that partitions the substrate into a plurality of package units, each of which has at least one of the semiconductor components; and a metal layer formed on the substrate and the encapsulant and encapsulating a periphery of the package units, with the second surface exposed from the metal layer, wherein the metal layer is formed along a wall surface of the first groove, to form a second groove corresponding in position to the first groove and having a metal surface. Therefore, the package units are isolated and form a multilayer isolated structure, including metal layers and air layers, and are electromagnetically shielded from one another.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: September 11, 2018
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chih-Hsien Chiu, Hao-Ju Fang, Hsin-Lung Chung, Cho-Hsin Chang, Tsung-Hsien Tsai, Chia-Yang Chen, Chun-Chi Ke
  • Publication number: 20170338186
    Abstract: A semiconductor package is provided, including: a substrate; a first semiconductor element disposed on the substrate and having a first conductive pad grounded to the substrate; a conductive layer formed on the first semiconductor element and electrically connected to the substrate; a second semiconductor element disposed on the first semiconductor element through the conductive layer; and an encapsulant formed on the substrate and encapsulating the first and second semiconductor elements. Therefore, the first and second semiconductor elements are protected from electromagnetic interference (EMI) shielding with the conductive layer being connected to the grounding pad of the substrate. A fabrication method of the semiconductor package is also provided.
    Type: Application
    Filed: August 4, 2017
    Publication date: November 23, 2017
    Inventors: Fu-Tang Huang, Chun-Chi Ke
  • Publication number: 20170236787
    Abstract: A semiconductor package is provided, including: a substrate having opposing first and second surfaces; a plurality of semiconductor components disposed on and electrically connected to the first surface; an encapsulant encapsulating the first surface and the semiconductor components and having at least one first groove that partitions the substrate into a plurality of package units, each of which has at least one of the semiconductor components; and a metal layer formed on the substrate and the encapsulant and encapsulating a periphery of the package units, with the second surface exposed from the metal layer, wherein the metal layer is formed along a wall surface of the first groove, to form a second groove corresponding in position to the first groove and having a metal surface. Therefore, the package units are isolated and form a multilayer isolated structure, including metal layers and air layers, and are electromagnetically shielded from one another.
    Type: Application
    Filed: May 2, 2017
    Publication date: August 17, 2017
    Inventors: Chih-Hsien Chiu, Hao-Ju Fang, Hsin-Lung Chung, Cho-Hsin Chang, Tsung-Hsien Tsai, Chia-Yang Chen, Chun-Chi Ke
  • Publication number: 20170200671
    Abstract: A method for fabricating a carrier-free semiconductor package includes: half-etching a metal carrier to form a plurality of recess grooves and a plurality of metal studs each serving in position as a solder pad or a die pad; filing each of the recess grooves with a first encapsulant; forming on the metal studs an antioxidant layer such as a silver plating layer or an organic solderable protection layer; and performing die-bonding, wire-bonding and molding processes respectively to form a second encapsulant encapsulating the chip. The recess grooves are filled with the first encapsulant to enhance the adhesion between the first encapsulant and the metal carrier, thereby solving the conventional problem of having a weak and pliable copper plate and avoiding transportation difficulty. The invention eliminates the use of costly metals as an etching resist layer to reduce fabrication cost, and further allows conductive traces to be flexibly disposed on the metal carrier to enhance electrical connection quality.
    Type: Application
    Filed: March 23, 2017
    Publication date: July 13, 2017
    Inventors: Yueh-Ying Tsai, Fu-Di Tang, Chien-Ping Huang, Chun-Chi Ke
  • Patent number: 9673151
    Abstract: A semiconductor package is provided, including: a substrate having opposing first and second surfaces; a plurality of semiconductor components disposed on and electrically connected to the first surface; an encapsulant encapsulating the first surface and the semiconductor components and having at least one first groove that partitions the substrate into a plurality of package units, each of which has at least one of the semiconductor components; and a metal layer formed on the substrate and the encapsulant and encapsulating a periphery of the package units, with the second surface exposed from the metal layer, wherein the metal layer is formed along a wall surface of the first groove, to form a second groove corresponding in position to the first groove and having a metal surface. Therefore, the package units are isolated and form a multilayer isolated structure, including metal layers and air layers, and are electromagnetically shielded from one another.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: June 6, 2017
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chih-Hsien Chiu, Hao-Ju Fang, Hsin-Lung Chung, Cho-Hsin Chang, Tsung-Hsien Tsai, Chia-Yang Chen, Chun-Chi Ke
  • Publication number: 20170148761
    Abstract: The present invention provides a semiconductor package and a method of fabricating the same, including: placing in a groove of a carrier a semiconductor element having opposing active and non-active surfaces, and side surfaces abutting the active surface and the non-active surface; applying an adhesive material in the groove and around a periphery of the side surfaces of the semiconductor element; forming a dielectric layer on the adhesive material and the active surface of the semiconductor element; forming on the dielectric layer a circuit layer electrically connected to the semiconductor element; and removing a first portion of the carrier below the groove to keep a second portion of the carrier on a side wall of the groove intact for the second portion to function as a supporting member. The present invention does not require formation of a silicon interposer, and therefore the overall cost of a final product is much reduced.
    Type: Application
    Filed: January 6, 2017
    Publication date: May 25, 2017
    Inventors: Guang-Hwa Ma, Shih-Kuang Chiu, Shih-Ching Chen, Chun-Chi Ke, Chang-Lun Lu, Chun-Hung Lu, Hsien-Wen Chen, Chun-Tang Lin, Yi-Che Lai, Chi-Hsin Chiu, Wen-Tsung Tseng, Tsung-Te Yuan, Lu-Yi Chen, Mao-Hua Yeh
  • Patent number: 9425152
    Abstract: An EMI shielding package structure includes a substrate unit having a first surface with a die mounting area and a second surfaces opposite to the first surface, metallic pillars formed on the first surface, a chip mounted on and electrically connected to the die-mounting area, an encapsulant covering the chip and the first surface while exposing a portion of each of the metallic pillars from the encapsulant, and a shielding film enclosing the encapsulant and electrically connecting to the metallic pillars. A fabrication method of the above structure by two cutting processes is further provided. The first cutting process forms grooves by cutting the encapsulant. After a shielding film is formed in the grooves and electrically connected to the metallic pillars, the complete package structure is formed by the second cutting process, thereby simplifying the fabrication process while overcoming inferior grounding of the shielding film as encountered in prior techniques.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: August 23, 2016
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chin-Tsai Yao, Chien-Ping Huang, Chun-Chi Ke
  • Publication number: 20160093576
    Abstract: A semiconductor package is provided, including: a substrate having opposing first and second surfaces; a plurality of semiconductor components disposed on and electrically connected to the first surface; an encapsulant encapsulating the first surface and the semiconductor components and having at least one first groove that partitions the substrate into a plurality of package units, each of which has at least one of the semiconductor components; and a metal layer formed on the substrate and the encapsulant and encapsulating a periphery of the package units, with the second surface exposed from the metal layer, wherein the metal layer is formed along a wall surface of the first groove, to form a second groove corresponding in position to the first groove and having a metal surface. Therefore, the package units are isolated and form a multilayer isolated structure, including metal layers and air layers, and are electromagnetically shielded from one another.
    Type: Application
    Filed: August 27, 2015
    Publication date: March 31, 2016
    Inventors: Chih-Hsien Chiu, Hao-Ju Fang, Hsin-Lung Chung, Cho-Hsin Chang, Tsung-Hsien Tsai, Chia-Yang Chen, Chun-Chi Ke
  • Patent number: 9254994
    Abstract: A package structure having at least an MEMS element is provided, including a chip having electrical connecting pads and the MEMS element; a lid disposed on the chip to cover the MEMS element and having a metal layer provided thereon; first sub-bonding wires electrically connecting to the electrical connecting pads; second sub-bonding wires electrically connecting to the metal layer; an encapsulant disposed on the chip, wherein the top ends of the first and second sub-bonding wires are exposed from the encapsulant; and metallic traces disposed on the encapsulant and electrically connecting to the first sub-bonding wires. The package structure advantageously features reduced size, relatively low costs, diverse bump locations, and an enhanced EMI shielding effect.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: February 9, 2016
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chi-Hsin Chiu, Chih-Ming Huang, Chang-Yueh Chan, Hsin-Yi Liao, Chun-Chi Ke
  • Patent number: 9190387
    Abstract: A quad flat non-leaded (QFN) package structure with an electromagnetic interference (EMI) shielding function is proposed, including: a lead frame having a die pad, a plurality of supporting portions connecting to the die pad and a plurality of leads disposed around the periphery of the die pad without connecting to the die pad; a chip mounted on the die pad; bonding wires electrically connecting the chip and the leads; an encapsulant for encapsulating the chip, the bonding wires and the lead frame and exposing the side and bottom surfaces of the leads and the bottom surface of the die pad; and a shielding film disposed on the top and side surfaces of the encapsulant and electrically connecting to the supporting portions for shielding from EMI. A method of fabricating the package structure as described above is further proposed.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: November 17, 2015
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chin-Tsai Yao, Chien-Ping Huang, Chun-Chi Ke
  • Patent number: 9190296
    Abstract: A semiconductor package without a chip carrier formed thereon and a fabrication method thereof. A metallic carrier is half-etched to form a plurality of grooves and metal studs corresponding to the grooves. The grooves are filled with a first encapsulant and a plurality of bonding pads are formed on the metal studs. The first encapsulant is bonded with the metal studs directly. Each of the bonding pads and one of the metal studs corresponding to the bonding pad form a T-shaped structure. Therefore, bonding force between the metal studs and the first encapsulant is enhanced such that delamination is avoided. Die mounting, wire-bonding and molding processes are performed subsequently. Since the half-etched grooves are filled with the first encapsulant, the drawback of having pliable metallic carrier that makes transportation difficult to carry out as encountered in prior techniques is overcome, and the manufacturing cost is educed by not requiring the use of costly metals as an etching resist layer.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: November 17, 2015
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Yueh-Ying Tsai, Fu-Di Tang, Chien-Ping Huang, Chun-Chi Ke
  • Patent number: 9177837
    Abstract: A semiconductor package having electrical connecting structures includes: a conductive layer having a die pad and traces surrounding the die pad; a chip; bonding wires; an encapsulant with a plurality of cavities having a depth greater than the thickness of the die pad and traces for embedding the die pad and the traces therein, and the cavities exposing the die pad and the traces; a solder mask layer formed in the cavities and having a plurality of openings for exposing the trace ends and a portion of the die pad; and solder balls formed in the openings and electrically connected to the trace ends. Engaging the solder mask layer with the encapsulant enhances adhesion strength of the solder mask layer so as to prolong the moisture permeation path and enhance package reliability.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: November 3, 2015
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Pang-Chun Lin, Chun-Yuan Li, Fu-Di Tang, Chien-Ping Huang, Chun-Chi Ke