Patents by Inventor Chun-Chieh Chang

Chun-Chieh Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978664
    Abstract: A method includes forming a first conductive feature over a semiconductor substrate, forming an ILD layer over the first conductive feature, patterning the ILD layer to form a trench, and forming a conductive layer over the patterned ILD layer to fill the trench. The method further includes polishing the conductive layer to form a via contact configured to interconnect the first conductive feature with a second conductive feature, where polishing the conductive layer exposes a top surface of the ILD layer, polishing the exposed top surface of the ILD layer, such that a top portion of the via contact protrudes from the exposed top surface of the ILD layer, and forming the second conductive feature over the via contact, such that the top portion of the via contact extends into the second conductive feature.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pang-Sheng Chang, Chao-Hsun Wang, Kuo-Yi Chao, Fu-Kai Yang, Mei-Yun Wang, Li-Chieh Wu, Chun-Wei Hsu
  • Publication number: 20240119017
    Abstract: A bridge control chip includes a first interface, a second interface, and a processor, wherein the first interface is coupled to a host device, the second interface is coupled to a memory device, and the memory device is a flash memory device. The processor is arranged to execute commands in a queue in sequence, to transmit the commands in the queue to the memory device through the second interface in sequence, wherein when the processor receives one or more received commands from the host device, the processor sorts the one or more received commands and commands which are currently and temporarily stored in the queue according to a distance between a logical address of each of the one or more received commands and a logical address of a current command in the queue that is currently executed by the processor.
    Type: Application
    Filed: February 14, 2023
    Publication date: April 11, 2024
    Applicant: Silicon Motion, Inc.
    Inventors: Guo-Rung Huang, Chun-Chieh Chang, Hsing-Lang Huang
  • Patent number: 11955515
    Abstract: A semiconductor device with dual side source/drain (S/D) contact structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a superlattice structure on the fin structure, forming first and second S/D regions within the superlattice structure, forming a gate structure between the first and second S/D regions, forming first and second contact structures on first surfaces of the first and second S/D regions, and forming a third contact structure, on a second surface of the first S/D region, with a work function metal (WFM) silicide layer and a dual metal liner. The second surface is opposite to the first surface of the first S/D region and the WFM silicide layer has a work function value closer to a conduction band energy than a valence band energy of a material of the first S/D region.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Chuan Chiu, Chia-Hao Chang, Cheng-Chi Chuang, Chih-Hao Wang, Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Yu-Ming Lin
  • Publication number: 20240113143
    Abstract: Various embodiments of the present disclosure are directed towards an imaging device including a first image sensor element and a second image sensor element respectively comprising a pixel unit disposed within a semiconductor substrate. The first image sensor element is adjacent to the second image sensor element. A first micro-lens overlies the first image sensor element and is laterally shifted from a center of the pixel unit of the first image sensor element by a first lens shift amount. A second micro-lens overlies the second image sensor element and is laterally shifted from a center of the pixel unit of the second image sensor element by a second lens shift amount different from the first lens shift amount.
    Type: Application
    Filed: January 6, 2023
    Publication date: April 4, 2024
    Inventors: Cheng Yu Huang, Wen-Hau Wu, Chun-Hao Chuang, Keng-Yu Chou, Wei-Chieh Chiang, Chih-Kung Chang
  • Patent number: 11948722
    Abstract: A planar winding transformer includes a magnetic core set and a multilayer circuit board. The magnetic core set includes two magnetic cores and two magnetic columns. The two magnetic cores are parallel to each other. The multilayer circuit board is disposed between two magnetic cores, and two magnetic columns penetrate through the multilayer circuit board. The multilayer circuit board includes two low voltage winding layers and one high voltage winding layer. Two low voltage winding layers are connected to each other in parallel, and the high voltage winding layer is disposed between two low voltage winding layers. When the high voltage winding layer receives a polarity current, at least one of the low voltage winding layers generates a corresponding induced current. Two magnetic cores and two magnetic columns form a closed path for magnetic flux.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: April 2, 2024
    Assignees: CHICONY POWER TECHNOLOGY CO., LTD., NATIONAL TAIPEI UNIVERSITY OF TECHNOLOGY
    Inventors: Yen-Shin Lai, Yong-Yi Huang, Chun-Hung Lee, Hao-Chieh Chang
  • Patent number: 11950491
    Abstract: A semiconductor mixed material comprises an electron donor, a first electron acceptor and a second electron acceptor. The first electron donor is a conjugated polymer. The energy gap of the first electron acceptor is less than 1.4 eV. At least one of the molecular stackability, ?-?*stackability, and crystallinity of the second electron acceptor is smaller than the first electron acceptor. The electron donor system is configured to be a matrix to blend the first electron acceptor and the second electron acceptor. The present invention also provides an organic electronic device including the semiconductor mixed material.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: April 2, 2024
    Assignee: RAYNERGY TEK INCORPORATION
    Inventors: Yi-Ming Chang, Chuang-Yi Liao, Wei-Long Li, Yu-Tang Hsiao, Chun-Chieh Lee, Chia-Hua Li, Huei-Shuan Tan
  • Patent number: 11950427
    Abstract: A memory cell includes a transistor over a semiconductor substrate. The transistor includes a ferroelectric layer arranged along a sidewall of a word line. The ferroelectric layer includes a species with valence of 5, valence of 7, or a combination thereof. An oxide semiconductor layer is electrically coupled to a source line and a bit line. The ferroelectric layer is disposed between the oxide semiconductor layer and the word line.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Sai-Hooi Yeong, Bo-Feng Young, Yu-Ming Lin, Chih-Yu Chang
  • Publication number: 20240107776
    Abstract: An antiferroelectric field effect transistor (Anti-FeFET) of a memory cell includes an antiferroelectric layer instead of a ferroelectric layer. The antiferroelectric layer may operate based on a programmed state and an erased state in which the antiferroelectric layer is in a fully polarized alignment and a non-polarized alignment (or a random state of polarization), respectively. This enables the antiferroelectric layer in the FeFET to provide a sharper/larger voltage drop for an erase operation of the FeFET (e.g., in which the FeFET switches or transitions from the programmed state to the erased state) relative to a ferroelectric material layer that operates based on switching between two opposing fully polarized states.
    Type: Application
    Filed: January 5, 2023
    Publication date: March 28, 2024
    Inventors: Chun-Chieh LU, Chih-Yu CHANG, Yu-Chuan SHIH, Huai-Ying HUANG, Yu-Ming LIN
  • Patent number: 11942380
    Abstract: A method includes forming a dummy pattern over test region of a substrate; forming an interlayer dielectric (ILD) layer laterally surrounding the dummy pattern; removing the dummy pattern to form an opening; forming a dielectric layer in the opening; performing a first testing process on the dielectric layer; performing an annealing process to the dielectric layer; and performing a second testing process on the annealed dielectric layer.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Shiang Lin, Chia-Cheng Ho, Chun-Chieh Lu, Cheng-Yi Peng, Chih-Sheng Chang
  • Publication number: 20240096701
    Abstract: A device includes: a stack of semiconductor nanostructures; a gate structure wrapping around the semiconductor nanostructures, the gate structure extending in a first direction; a source/drain region abutting the gate structure and the stack in a second direction transverse the first direction; a contact structure on the source/drain region; a backside conductive trace under the stack, the backside conductive trace extending in the second direction; a first through via that extends vertically from the contact structure to a top surface of the backside dielectric layer; and a gate isolation structure that abuts the first through via in the second direction.
    Type: Application
    Filed: May 17, 2023
    Publication date: March 21, 2024
    Inventors: Chun-Yuan CHEN, Huan-Chieh SU, Ching-Wei TSAI, Shang-Wen CHANG, Yi-Hsun CHIU, Chih-Hao WANG
  • Publication number: 20240096996
    Abstract: A semiconductor device includes a first dielectric layer, a stack of semiconductor layers disposed over the first dielectric layer, a gate structure wrapping around each of the semiconductor layers and extending lengthwise along a direction, and a dielectric fin structure and an isolation structure disposed on opposite sides of the stack of semiconductor layers and embedded in the gate structure. The dielectric fin structure has a first width along the direction smaller than a second width of the isolation structure along the direction. The isolation structure includes a second dielectric layer extending through the gate structure and the first dielectric layer, and a third dielectric layer extending through the first dielectric layer and disposed on a bottom surface of the gate structure and a sidewall of the first dielectric layer.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Lo-Heng Chang, Cheng-Chi Chuang, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240088182
    Abstract: In some embodiments, an image sensor is provided. The image sensor includes a photodetector disposed in a semiconductor substrate. A wave guide filter having a substantially planar upper surface is disposed over the photodetector. The wave guide filter includes a light filter disposed in a light filter grid structure. The light filter includes a first material that is translucent and has a first refractive index. The light filter grid structure includes a second material that is translucent and has a second refractive index less than the first refractive index.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Chien Yu, Ting-Cheng Chang, Wen-Hau Wu, Chih-Kung Chang
  • Publication number: 20240087951
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first metal layer over a substrate, forming a dielectric layer over the first metal layer. The method includes forming a trench in the dielectric layer, and performing a surface treatment process on a sidewall surface of the trench to form a hydrophobic layer. The hydrophobic layer is formed on a sidewall surface of the dielectric layer. The method further includes depositing a metal material in the trench and over the hydrophobic layer to form a via structure.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Chun-Hao Kung, Chih-Chieh Chang, Kao-Feng Liao, Hui-Chi Huang, Kei-Wei Chen
  • Patent number: 11926266
    Abstract: An installing module includes a seat bracket, a plurality of lower gaskets, a device bracket and an upper gasket. The seat bracket includes a first locking plate and a second locking plate locked to each other. The first locking plate includes a first concave and the second locking plate includes a second concave corresponding to the first concave. The lower gaskets are respectively disposed on the first concave and the second concave. The lower gaskets face each other and jointly define a lower assembly hole and are disposed on a lower side of a head-support fixer of a car seat. The device bracket is locked to the seat bracket and an electronic device is pivotally coupled to the device bracket. The upper gasket is disposed between the device bracket and the head-support fixer, and the head-support fixer is clamped between the upper gasket and the lower gaskets.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: March 12, 2024
    Assignee: PEGATRON CORPORATION
    Inventors: Shih-Wei Yeh, Chien-Chih Lin, Yi-Ming Chou, Chun-Chieh Chang
  • Patent number: 11927799
    Abstract: A data transmission system is disclosed. The data transmission system includes at least one signal processing device, at least one conversion device, at least one antenna device, and at least one flexible printed circuit board. The at least one signal processing device is configured to generate or receive at least one data. The at least one conversion device is configured to transform between the at least one data and an optical signal. The at least one antenna device is configured to obtain the at least one data according to the optical signal, and configured to receive or transmit the at least one data wirelessly. The at least one flexible printed circuit board includes at least one conductive layer and at least one optical waveguide layer. The at least one optical waveguide layer is configured to transmit the optical signal.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: March 12, 2024
    Inventors: Po-Kuan Shen, Chun-Chiang Yen, Chiu-Lin Yu, Kai-Lun Han, Jenq-Yang Chang, Mao-Jen Wu, Chao-Chieh Hsu
  • Publication number: 20240079887
    Abstract: The present invention provides a protection circuit applied to a battery module, which includes a self-control protector, a switch element and a voltage clamping loop; the self-control protector includes a fuse unit and a heater; when the switch element receives a control signal, the switch element will be turned on; when the switch element is turned on, the voltage clamping loop provides a clamp voltage to clamp a working current passing through the self-control protector within a current range where the fuse unit can be blown; and as such, the fuse unit of the self-control protector will be blown by the working current heating the heater.
    Type: Application
    Filed: July 10, 2023
    Publication date: March 7, 2024
    Inventors: Wen-Fan Chang, Chun-Chieh Li, Jung-Nan Chien
  • Patent number: 11923386
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. The integrated chip includes a first photodetector disposed in a first pixel region of a semiconductor substrate and a second photodetector disposed in a second pixel region of the semiconductor substrate. The second photodetector is laterally separated from the first photodetector. A first diffuser is disposed along a back-side of the semiconductor substrate and over the first photodetector. A second diffuser is disposed along the back-side of the semiconductor substrate and over the second photodetector. A first midline of the first pixel region and a second midline of the second pixel region are both disposed laterally between the first diffuser and the second diffuser.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Kazuaki Hashimoto, Wei-Chieh Chiang, Cheng Yu Huang, Wen-Hau Wu, Chih-Kung Chang
  • Publication number: 20240071538
    Abstract: The present disclosure provides a multi-state one-time programmable (MSOTP) memory circuit including a memory cell and a programming voltage driving circuit. The memory cell includes a MOS storage transistor, a first MOS access transistor and a second MOS access transistor electrically connected to store two bits of data. When the memory cell is in a writing state, the programming voltage driving circuit outputs a writing control potential to the gate of the MOS storage transistor, and when the memory cell is in a reading state, the programming voltage driving circuit outputs a reading control potential to the gate of the MOS storage transistor.
    Type: Application
    Filed: August 22, 2023
    Publication date: February 29, 2024
    Inventors: CHEN-FENG CHANG, YU-CHEN LO, TSUNG-HAN LU, SHU-CHIEH CHANG, CHUN-HAO LIANG, DONG-YU WU, MENG-LIN WU
  • Patent number: 11685306
    Abstract: A light emitting device including a lighting unit and a conversion material is disclosed. The conversion material is configured to convert a part of the invisible light emitted from the lighting unit into a visible light, which indicates that the lighting unit is in operation. The spectral energy of visible light is less than 20% of the spectral energy measured within a wavelength range of 200 nm to 380 nm.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: June 27, 2023
    Assignee: LITE-ON TECHNOLOGY CORPORATION
    Inventors: Wei-Te Cheng, Kai-Chieh Liang, Kuo-Ming Chiu, Fang-Jung Sun, Chun-Chieh Chang, Yi-Fei Lee
  • Patent number: 11681118
    Abstract: An optical element driving mechanism having an optical axis includes a fixed portion, a movable portion, and a driving assembly. The movable portion is connected to the fixed portion. The driving assembly drives the movable portion to move in a direction that is parallel to the optical axis relative to the fixed portion, when viewed in the direction that is parallel to the optical axis, the optical element driving mechanism is a rectangular structure with a first side, a second side, a third side, and a fourth side, the first side and the third side are opposite, and the first side is adjacent to the second side and the fourth side.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: June 20, 2023
    Assignee: TDK TAIWAN CORP.
    Inventors: Wei-Jhe Shen, Kun-Shih Lin, Yung-Ping Yang, Chun-Chieh Chang, Sheng-Chang Lin, Che-Hsiang Chiu