Patents by Inventor Chun-Chieh Lu

Chun-Chieh Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950427
    Abstract: A memory cell includes a transistor over a semiconductor substrate. The transistor includes a ferroelectric layer arranged along a sidewall of a word line. The ferroelectric layer includes a species with valence of 5, valence of 7, or a combination thereof. An oxide semiconductor layer is electrically coupled to a source line and a bit line. The ferroelectric layer is disposed between the oxide semiconductor layer and the word line.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Sai-Hooi Yeong, Bo-Feng Young, Yu-Ming Lin, Chih-Yu Chang
  • Publication number: 20240105515
    Abstract: A method includes forming a first low-dimensional layer over an isolation layer, forming a first insulator over the first low-dimensional layer, forming a second low-dimensional layer over the first insulator, forming a second insulator over the second low-dimensional layer, and patterning the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator into a protruding fin. Remaining portions of the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator form a first low-dimensional strip, a first insulator strip, a second low-dimensional strip, and a second insulator strip, respectively. A transistor is then formed based on the protruding fin.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 28, 2024
    Inventors: Chao-Ching Cheng, Tzu-Ang Chao, Chun-Chieh Lu, Hung-Li Chiang, Tzu-Chiang Chen, Lain-Jong Li
  • Publication number: 20240107776
    Abstract: An antiferroelectric field effect transistor (Anti-FeFET) of a memory cell includes an antiferroelectric layer instead of a ferroelectric layer. The antiferroelectric layer may operate based on a programmed state and an erased state in which the antiferroelectric layer is in a fully polarized alignment and a non-polarized alignment (or a random state of polarization), respectively. This enables the antiferroelectric layer in the FeFET to provide a sharper/larger voltage drop for an erase operation of the FeFET (e.g., in which the FeFET switches or transitions from the programmed state to the erased state) relative to a ferroelectric material layer that operates based on switching between two opposing fully polarized states.
    Type: Application
    Filed: January 5, 2023
    Publication date: March 28, 2024
    Inventors: Chun-Chieh LU, Chih-Yu CHANG, Yu-Chuan SHIH, Huai-Ying HUANG, Yu-Ming LIN
  • Patent number: 11942380
    Abstract: A method includes forming a dummy pattern over test region of a substrate; forming an interlayer dielectric (ILD) layer laterally surrounding the dummy pattern; removing the dummy pattern to form an opening; forming a dielectric layer in the opening; performing a first testing process on the dielectric layer; performing an annealing process to the dielectric layer; and performing a second testing process on the annealed dielectric layer.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Shiang Lin, Chia-Cheng Ho, Chun-Chieh Lu, Cheng-Yi Peng, Chih-Sheng Chang
  • Patent number: 11935890
    Abstract: In a method for forming an integrated semiconductor device, a first inter-layer dielectric (ILD) layer is formed over a semiconductor device that includes a first transistor structure, a two-dimensional (2D) material layer is formed over and in contact with the first ILD layer, the 2D material layer is patterned to form a channel layer of a second transistor structure, a source electrode and a drain electrode of the second transistor structure are formed over the patterned 2D material layer and laterally spaced apart from each other, a gate dielectric layer of the second transistor structure is formed over the patterned 2D material layer, the source electrode and the drain electrode, and a gate electrode of the second transistor structure is formed over the gate dielectric layer and laterally between the source electrode and the drain electrode.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: March 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yi Peng, Chun-Chieh Lu, Meng-Hsuan Hsiao, Ling-Yen Yeh, Carlos H. Diaz, Tung-Ying Lee
  • Publication number: 20240087887
    Abstract: A method includes: forming a bottom electrode over a substrate; depositing a first seed layer over the bottom electrode, the first seed layer having an amorphous crystal phase; performing a first surface treatment on the first seed layer, wherein after the first surface treatment the first seed layer includes at least one of a tetragonal crystal phase and an orthorhombic crystal phase; depositing a dielectric layer over the bottom electrode adjacent to the first seed layer; depositing an upper layer over the dielectric layer; and performing a thermal operation on the dielectric layer to thereby convert the dielectric layer into a ferroelectric layer.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 14, 2024
    Inventors: CHUN-CHIEH LU, SAI-HOOI YEONG, YU-MING LIN
  • Publication number: 20240073378
    Abstract: A projection apparatus including a light source module, an eccentric-collimating lens, a prism lens group, a light valve and a projection lens is provided. The light source module is configured to provide an illumination light beam. The eccentric-collimating lens is disposed between the light sources and the light valve on a transmission path of the illumination light beam. The light valve is configured to convert the illumination light beam into an image light beam. The projection lens is configured to project the image light beam out of the projection apparatus. A first included angle between a first transmission direction of the illumination light beam incident on the eccentric-collimating lens and a central axis of the eccentric-collimating lens is greater than 0. The first transmission direction and a second transmission direction of the image beam exiting from the light valve are perpendicular to each other.
    Type: Application
    Filed: August 24, 2023
    Publication date: February 29, 2024
    Applicant: Coretronic Corporation
    Inventors: Chun-Hsin Lu, Jen-Wei Kuo, Wen-Chieh Chung
  • Publication number: 20240069425
    Abstract: An illumination system including two light source modules, two light guiding modules, a first reflector, and a light homogenization element is provided. The two light guiding modules are respectively disposed on transmission paths of light beams generated by the two light source modules to generate two guiding light beams. One of the guiding light beams is reflected to the light homogenization element by the first reflector. The other of the guiding light beams is directly transmitted to the light homogenization element. The guiding light beams are emitted from the light homogenization element and form an illumination light beam. A projection apparatus is also provided.
    Type: Application
    Filed: August 24, 2023
    Publication date: February 29, 2024
    Applicant: Coretronic Corporation
    Inventors: Chun-Hsin Lu, Jen-Wei Kuo, Wen-Chieh Chung
  • Publication number: 20240071538
    Abstract: The present disclosure provides a multi-state one-time programmable (MSOTP) memory circuit including a memory cell and a programming voltage driving circuit. The memory cell includes a MOS storage transistor, a first MOS access transistor and a second MOS access transistor electrically connected to store two bits of data. When the memory cell is in a writing state, the programming voltage driving circuit outputs a writing control potential to the gate of the MOS storage transistor, and when the memory cell is in a reading state, the programming voltage driving circuit outputs a reading control potential to the gate of the MOS storage transistor.
    Type: Application
    Filed: August 22, 2023
    Publication date: February 29, 2024
    Inventors: CHEN-FENG CHANG, YU-CHEN LO, TSUNG-HAN LU, SHU-CHIEH CHANG, CHUN-HAO LIANG, DONG-YU WU, MENG-LIN WU
  • Patent number: 11916144
    Abstract: In some embodiments of the present disclosure, a method for forming a semiconductor device is described. A semiconductor layer is formed and a dielectric layer is formed. A pressurized treatment is performed to transform the semiconductor layer into a low-doping semiconductor layer and transform the dielectric layer into a crystalline ferroelectric layer. A gate layer is formed. An insulating layer is formed over the gate layer, the crystalline ferroelectric layer and the low-doping semiconductor layer. Contact openings are formed in the insulating layer exposing portions of the low-doping semiconductor layer. Source and drain terminals are formed on the low-doping semiconductor layer.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Georgios Vellianitis, Chun-Chieh Lu, Sai-Hooi Yeong, Mauricio Manfrini
  • Patent number: 11910617
    Abstract: Provided is a ferroelectric memory device having a multi-layer stack disposed over a substrate and including a plurality of conductive layers and a plurality of dielectric layers stacked alternately. A channel layer penetrates through the plurality of conductive layers and the plurality of dielectric layers. A plurality of ferroelectric portions are discretely disposed between the channel layer and the plurality of conductive layers. The plurality of ferroelectric portions are vertically separated from one another by one or more non-zero distances.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: February 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Han-Jong Chia, Sai-Hooi Yeong, Bo-Feng Young, Yu-Ming Lin
  • Publication number: 20240055517
    Abstract: Provided are a ferroelectric memory device and a method of forming the same. The ferroelectric memory device includes: a gate electrode; a ferroelectric layer, disposed on the gate electrode; a channel layer, disposed on the ferroelectric layer; a pair of source/drain (S/D) electrodes, disposed on the channel layer; a first insertion layer, disposed between the gate electrode and the ferroelectric layer; and a second insertion layer, disposed between the ferroelectric layer and the channel layer, wherein the second insertion layer has a thickness less than a thickness of the first insertion layer.
    Type: Application
    Filed: August 12, 2022
    Publication date: February 15, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chang Chiang, Yu-Chuan Shih, Chun-Chieh Lu, Po-Ting Lin, Hai-Ching Chen, Sai-Hooi Yeong, Yu-Ming Lin, Chung-Te Lin
  • Patent number: 11903221
    Abstract: A device includes a first transistor over a substrate, a second transistor disposed over the first transistor, and a memory element disposed over the second transistor. The second transistor includes a channel layer, a gate dielectric layer surrounding a sidewall of the channel layer, and a gate electrode surrounding a sidewall of the gate dielectric layer.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chenchen Wang, Chun-Chieh Lu, Chi On Chui, Yu-Ming Lin, Sai-Hooi Yeong
  • Publication number: 20240030325
    Abstract: A transistor device having fin structures, source and drain terminals, channel layers and a gate structure is provided. The fin structures are disposed on a material layer. The fin structures are arranged in parallel and extending in a first direction. The source and drain terminals are disposed on the fin structures and the material layer and cover opposite ends of the fin structures. The channel layers are disposed respectively on the fin structures, and each channel layer extends between the source and drain terminals on the same fin structure. The gate structure is disposed on the channel layers and across the fin structures. The gate structure extends in a second direction perpendicular to the first direction. The materials of the channel layers include a transition metal and a chalcogenide, the source and drain terminals include a metallic material, and the channel layers are covalently bonded with the source and drain terminals.
    Type: Application
    Filed: October 3, 2023
    Publication date: January 25, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Chao-Ching Cheng, Tzu-Ang Chao, Lain-Jong Li
  • Publication number: 20240023341
    Abstract: A ferroelectric tunnel junction (FTJ) memory device includes a bottom electrode located over a substrate, a top electrode overlying the bottom electrode, and a ferroelectric tunnel junction memory element located between the bottom electrode and the top electrode. The ferroelectric tunnel junction memory element includes at least one ferroelectric material layer and at least one tunneling dielectric layer.
    Type: Application
    Filed: July 19, 2023
    Publication date: January 18, 2024
    Inventors: Mauricio Manfrini, Bo-Feng Young, Chun-Chieh Lu, Han-Jong Chia, Sai-Hooi Yeong
  • Patent number: 11869766
    Abstract: A method includes: providing a bottom layer; forming a first transistor over a substrate; forming a bottom electrode over the transistor; depositing a first seed layer over the bottom electrode; performing a surface treatment on the first seed layer, wherein after the surface treatment the first seed layer includes at least one of a tetragonal crystal phase and an orthorhombic crystal phase; depositing a dielectric layer over the bottom layer adjacent to the first seed layer, the dielectric layer including an amorphous crystal phase; depositing an upper layer over the dielectric layer; performing a thermal operation on the dielectric layer to thereby convert the dielectric layer into a ferroelectric layer.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: January 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun-Chieh Lu, Sai-Hooi Yeong, Yu-Ming Lin
  • Patent number: 11854895
    Abstract: A method includes forming a first low-dimensional layer over an isolation layer, forming a first insulator over the first low-dimensional layer, forming a second low-dimensional layer over the first insulator, forming a second insulator over the second low-dimensional layer, and patterning the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator into a protruding fin. Remaining portions of the first low-dimensional layer, the first insulator, the second low-dimensional layer, and the second insulator form a first low-dimensional strip, a first insulator strip, a second low-dimensional strip, and a second insulator strip, respectively. A transistor is then formed based on the protruding fin.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Ching Cheng, Tzu-Ang Chao, Chun-Chieh Lu, Hung-Li Chiang, Tzu-Chiang Chen, Lain-Jong Li
  • Publication number: 20230413544
    Abstract: In an embodiment, a method includes forming a multi-layer stack including alternating layers of an isolation material and a semiconductor material, patterning the multi-layer stack to form a first channel structure in a first region of the multi-layer stack, where the first channel structure includes the semiconductor material, depositing a memory film layer over the first channel structure, etching a first trench extending through a second region of the multi-layer stack to form a first dummy bit line and a first dummy source line in the second region, where the first dummy bit line and first dummy source line each include the semiconductor material, and replacing the semiconductor material of the first dummy bit line and the first dummy source line with a conductive material to form a first bit line and a first source line.
    Type: Application
    Filed: July 31, 2023
    Publication date: December 21, 2023
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Chi On Chui, Chun-Chieh Lu, Yu-Ming Lin
  • Publication number: 20230397442
    Abstract: A device includes a first transistor over a substrate, a second transistor disposed over the first transistor, and a memory element disposed over the second transistor. The second transistor includes a channel layer, a gate dielectric layer surrounding a sidewall of the channel layer, and a gate electrode surrounding a sidewall of the gate dielectric layer.
    Type: Application
    Filed: August 10, 2023
    Publication date: December 7, 2023
    Inventors: Chenchen Wang, Chun-Chieh Lu, Chi On Chui, Yu-Ming Lin, Sai-Hooi Yeong
  • Patent number: 11839080
    Abstract: A process of forming a three-dimensional (3D) memory array includes forming a stack having a plurality of conductive layers of carbon-based material separated by dielectric layers. Etching trenches in the stack divides the conductive layers into conductive strips. The resulting structure includes a two-dimensional array of horizontal conductive strips. Memory cells may be distributed along the length of each strip to provide a 3D array. The conductive strips together with additional conductive structure that may have a vertical or horizontal orientation allow the memory cells to be addressed individually. Forming the conductive layers with carbon-based material facilitate etching the trenches to a high aspect ratio. Accordingly, forming the conductive layers of carbon-based material enables the memory array to have more layers or to have a higher area density.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: December 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Sai-Hooi Yeong, Yu-Ming Lin