Patents by Inventor Chun-Fu Lu
Chun-Fu Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12288695Abstract: A method of forming a semiconductor device includes forming a first dielectric layer over a first channel region in a first region and over a second channel region in a second region; introducing a first dipole element into the first dielectric layer in the first region to form a first dipole-containing gate dielectric layer in the first region; forming a second dielectric layer over the first dipole-containing gate dielectric layer; introducing fluorine into the second dielectric layer to form a first fluorine-containing gate dielectric layer over the first dipole-containing gate dielectric layer; and forming a gate electrode over the first fluorine-containing gate dielectric layer.Type: GrantFiled: March 25, 2022Date of Patent: April 29, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chung-Wei Hsu, Kuo-Cheng Chiang, Mao-Lin Huang, Lung-Kun Chu, Jia-Ni Yu, Chun-Fu Lu, Chih-Hao Wang
-
Publication number: 20250120123Abstract: A semiconductor device structure and methods of forming the same are described. The structure includes a gate dielectric layer disposed over a substrate, a gate electrode layer disposed over the gate dielectric layer, and a first gate spacer disposed adjacent the gate dielectric layer, wherein the first gate spacer comprises an inner surface facing the gate dielectric layer and an outer surface opposite the inner surface, and the first gate spacer includes an oxygen concentration that decreases from the inner surface towards the outer surface of the first gate spacer.Type: ApplicationFiled: January 24, 2024Publication date: April 10, 2025Inventors: Chun-Fu LU, Lung-Kun CHU, Jia-Ni YU, Chung-Wei HSU, Shih-Hao LAI, Kuo-Cheng CHIANG, Chih-Hao WANG
-
Patent number: 12266544Abstract: A method for processing an integrated circuit includes forming a plurality of transistors. The method utilizes a reversed tone patterning process to selectively drive dipoles into the gate dielectric layers of some of the transistors while preventing dipoles from entering the gate dielectric layers of other transistors. This process can be repeated to produce a plurality of transistors each having different threshold voltages.Type: GrantFiled: April 24, 2024Date of Patent: April 1, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Lung-Kun Chu, Jia-Ni Yu, Chun-Fu Lu, Kuo-Cheng Chiang, Chih-Hao Wang
-
Publication number: 20250107152Abstract: A semiconductor device includes a channel portion disposed on and spaced apart from a substrate, a gate dielectric which includes an upper dielectric region disposed on the channel portion, a first inner gate structure disposed between the substrate and the upper dielectric region, and an outer gate structure including an outer work-function portion and a cap portion. The outer work-function portion covers the upper dielectric region and the first inner gate structure. The cap portion covers the outer work-function portion in a way that the cap portion is separated from the first inner gate structure. The first inner gate structure includes a first work-function material and a conductive material that is different from the first work-function material. The outer work-function portion includes a second work-function material that is different from the conductive material.Type: ApplicationFiled: September 22, 2023Publication date: March 27, 2025Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chung-Wei HSU, Lung-Kun CHU, Jia-Ni YU, Chun-Fu LU, Shih-Hao LAI, Kuo-Cheng CHIANG, Chih-Hao WANG
-
Publication number: 20250072050Abstract: An integrated circuit includes a transistor having a plurality of stacked channels each extending between the source/drain regions of the transistor. The transistor also includes a hard mask nanostructure above the highest channel and extending between the source/drain regions of the transistor. A gate dielectric and gate metals wrap around the channels and the hard mask nanostructure.Type: ApplicationFiled: January 4, 2024Publication date: February 27, 2025Inventors: Chung-Wei HSU, Lung-Kun CHU, Jia-Ni YU, Chun-Fu LU, Shih-Hao LAI, Kuo-Cheng CHIANG, Chih-Hao WANG
-
Publication number: 20240387538Abstract: A semiconductor device is provided. The semiconductor device includes first channel nanostructures in a first device region, second channel nanostructures in a second device region, a dielectric fin at a boundary between the first device region and the second device region, a high-k dielectric layer surrounding each of the first channel nanostructures and each of the second channel nanostructures and over the dielectric fin, a first work function layer surrounding each of the first channel nanostructures and over the high-k dielectric layer and a second work function layer surrounding each of the second channel nanostructures and over the high-k dielectric layer and the first work function layer. The first work function layer fully fills spaces between the first channel nanostructures and has an edge located above the dielectric fin. The second work function layer fully fills spaces between the second channel nanostructures.Type: ApplicationFiled: July 26, 2024Publication date: November 21, 2024Inventors: Lung-Kun CHU, Mao-Lin HUANG, Chung-Wei HSU, Jia-Ni YU, Chun-Fu LU, Kuo-Cheng CHIANG, Kuan-Lun CHENG, Chih-Hao WANG
-
Publication number: 20240387628Abstract: A method of forming a semiconductor device includes forming a first dielectric layer over a first channel region in a first region and over a second channel region in a second region; introducing a first dipole element into the first dielectric layer in the first region to form a first dipole-containing gate dielectric layer in the first region; forming a second dielectric layer over the first dipole-containing gate dielectric layer; introducing fluorine into the second dielectric layer to form a first fluorine-containing gate dielectric layer over the first dipole-containing gate dielectric layer; and forming a gate electrode over the first fluorine-containing gate dielectric layer.Type: ApplicationFiled: July 28, 2024Publication date: November 21, 2024Inventors: Chung-Wei Hsu, Kuo-Cheng Chiang, Mao-Lin Huang, Lung-Kun Chu, Jia-Ni Yu, Chun-Fu Lu, Chih-Hao Wang
-
Publication number: 20240363732Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a gate structure formed over nanostructures. The gate structure includes a gate dielectric layer, and a fill layer over the gate dielectric layer. The semiconductor device structure includes a protection layer formed over the fill layer, and a gate spacer layer formed adjacent to the gate structure. The semiconductor device structure includes an insulating layer formed over the protection layer, and the insulating layer is in direct contact with the gate spacer layer.Type: ApplicationFiled: July 10, 2024Publication date: October 31, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Mao-Lin HUANG, Lung-Kun CHU, Chung-Wei HSU, Jia-Ni YU, Chun-Fu LU, Kuo-Cheng CHIANG, Kuan-Lun CHENG, Chih-Hao WANG
-
Patent number: 12119391Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a fin structure formed over a substrate, and a gate structure formed over the fin structure. The gate structure includes a gate dielectric layer, a first conductive layer over the first conductive layer. The gate structure includes a fill layer over the first conductive layer. The semiconductor device structure includes a protection layer formed over the fill layer, and a top surface of the gate dielectric layer is lower than a top surface of the protection layer and higher than a top surface of the first conductive layer.Type: GrantFiled: December 19, 2022Date of Patent: October 15, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Mao-Lin Huang, Lung-Kun Chu, Chung-Wei Hsu, Jia-Ni Yu, Chun-Fu Lu, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
-
Publication number: 20240322013Abstract: A method for manufacturing a semiconductor structure includes forming first and second channel layers over a substrate, forming first source/drain features over the first and second channel layers, forming a gate dielectric layer wrapping around the first and second channel layers, forming a first work function layer wrapping around the gate dielectric layer, forming a hard mask layer wrapping around the first work function layer, removing portions of the hard mask layer and the first work function layer, removing the hard mask layer and the first work function layer wrapping around the second channel layer, removing the hard mask layer wrapping around the first channel layer, forming a second work function layer wrapping around the first work function layer and the second channel layer, forming a metal material between the second work function layer, and forming second source/drain features under the first and second channel layers.Type: ApplicationFiled: March 23, 2023Publication date: September 26, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chun-Fu LU, Chih-Hao Wang, Wang-Chun Huang, Kuo-Cheng Chiang, Mao-Lin Huang, Jia-Ni Yu, Lung-Kun Chu, Chung-Wei Hsu
-
Publication number: 20240312993Abstract: An integrated circuit includes an NMOS gate all around (GAA) transistor and a PMOS GAA transistor. A single gate metal is utilized for both transistors. An effective work function is imparted to the NMOS transistor by including a first layer of the gate metal around the channels, a semiconductor layer around the first layer of the gate metal, and a gate fill layer of the gate metal on the semiconductor layer. The PMOS transistor, the gate fill layer of the gate metal is on the gate dielectric without an intervening semiconductor layer.Type: ApplicationFiled: July 18, 2023Publication date: September 19, 2024Inventors: Chung-Wei HSU, Lung-Kun CHU, Jia-Ni YU, Chun-Fu LU, Kuo-Cheng CHIANG, Chih-Hao WANG
-
Patent number: 12087771Abstract: A semiconductor device is provided. The semiconductor device includes first channel nanostructures in a first device region, second channel nanostructures in a second device region, a dielectric fin at a boundary between the first device region and the second device region, a high-k dielectric layer surrounding each of the first channel nanostructures and each of the second channel nanostructures and over the dielectric fin, a first work function layer surrounding each of the first channel nanostructures and over the high-k dielectric layer and a second work function layer surrounding each of the second channel nanostructures and over the high-k dielectric layer and the first work function layer. The first work functional layer fully fills spaces between the first channel nanostructures and has an edge located above the dielectric fin. The second work functional layer fully fills spaces between the second channel nanostructures.Type: GrantFiled: September 15, 2021Date of Patent: September 10, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Lung-Kun Chu, Mao-Lin Huang, Chung-Wei Hsu, Jia-Ni Yu, Chun-Fu Lu, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
-
Publication number: 20240297239Abstract: A semiconductor device and a method of fabricating the semiconductor device are disclosed. The method includes forming a fin base on a substrate, forming a superlattice structure including first and second nanostructured layers on the fin base, forming a polysilicon structure on the superlattice structure, epitaxially growing a S/D region on the fin base and adjacent to the first nanostructured layer, forming an oxygen-rich outer gate spacer including a first dielectric material with a first non-stoichiometric composition on a sidewall of the polysilicon structure, forming an oxygen-rich inner gate spacer including a second dielectric material with a second non-stoichiometric composition on a sidewall of the second nanostructured layer, and replacing the polysilicon structure with a gate structure.Type: ApplicationFiled: March 3, 2023Publication date: September 5, 2024Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Shen-Yang LEE, Chun-Fu Lu, Hsiang-Pi Chang
-
Publication number: 20240282587Abstract: A method for processing an integrated circuit includes forming a plurality of transistors. The method utilizes a reversed tone patterning process to selectively drive dipoles into the gate dielectric layers of some of the transistors while preventing dipoles from entering the gate dielectric layers of other transistors. This process can be repeated to produce a plurality of transistors each having different threshold voltages.Type: ApplicationFiled: April 24, 2024Publication date: August 22, 2024Inventors: Lung-Kun CHU, Jia-Ni YU, Chun-Fu LU, Kuo-Cheng CHIANG, Chih-Hao WANG
-
Publication number: 20240243186Abstract: A method for forming a semiconductor device structure includes forming nanostructures in a first region and a second region over a substrate. The method also includes forming a gate dielectric layer surrounding the nanostructures. The method also includes forming dummy structures between the nanostructures. The method also includes forming a dielectric layer over the nanostructures. The method also includes forming a dielectric structure between the nanostructures in the first region and nanostructures in the second region. The method also includes removing the dummy structures in the first region. The method also includes depositing a first work function layer over the nanostructures. The method also includes removing the first work function layer and the dummy structures in the second region. The method also includes depositing a second work function layer over the nanostructures.Type: ApplicationFiled: January 17, 2023Publication date: July 18, 2024Inventors: Chun-Fu LU, Lung-Kun CHU, Jia-Ni YU, Mao-Lin HUANG, Chung-Wei HSU, Kuo-Cheng CHIANG, Chih-Hao WANG
-
Patent number: 11996298Abstract: A method for processing an integrated circuit includes forming a plurality of transistors. The method utilizes a reversed tone patterning process to selectively drive dipoles into the gate dielectric layers of some of the transistors while preventing dipoles from entering the gate dielectric layers of other transistors. This process can be repeated to produce a plurality of transistors each having different threshold voltages.Type: GrantFiled: August 18, 2022Date of Patent: May 28, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Lung-Kun Chu, Jia-Ni Yu, Chun-Fu Lu, Kuo-Cheng Chiang, Chih-Hao Wang
-
Publication number: 20240120402Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a first dielectric feature extending along a first direction, the first dielectric feature comprising a first dielectric layer having a first sidewall and a second sidewall opposing the first sidewall, a first semiconductor layer disposed adjacent the first sidewall, the first semiconductor layer extending along a second direction perpendicular to the first direction, a second dielectric feature extending along the first direction, the second dielectric feature disposed adjacent the first semiconductor layer, and a first gate electrode layer surrounding at least three surfaces of the first semiconductor layer, and a portion of the first gate electrode layer is exposed to a first air gap.Type: ApplicationFiled: November 19, 2023Publication date: April 11, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Jia-Ni YU, Kuo-Cheng CHIANG, Mao-Lin HUANG, Lung-Kun CHU, Chung-Wei HSU, Chun-Fu LU, Chih-Hao WANG, Kuan-Lun CHENG
-
Publication number: 20240113195Abstract: Semiconductor structures and methods for forming the same are provided. The semiconductor structure includes a plurality of first nanostructures formed over a substrate, and a dielectric wall adjacent to the first nanostructures. The semiconductor structure also includes a first liner layer between the first nanostructures and the dielectric wall, and the first liner layer is in direct contact with the dielectric wall. The semiconductor structure also includes a gate structure surrounding the first nanostructures, and the first liner layer is in direct contact with a portion of the gate structure.Type: ApplicationFiled: February 22, 2023Publication date: April 4, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jia-Ni YU, Lung-Kun CHU, Chun-Fu LU, Chung-Wei HSU, Mao-Lin HUANG, Kuo-Cheng CHIANG, Chih-Hao WANG
-
Publication number: 20240096994Abstract: A method for forming a semiconductor device is provided. The method includes forming a plurality of first channel nanostructures and a plurality of second channel nanostructures in an n-type device region and a p-type device region of a substrate, respectively, and sequentially depositing a gate dielectric layer, an n-type work function metal layer, and a cap layer surrounding each of the first and second channel nanostructures. The cap layer merges in first spaces between adjacent first channel nanostructures and merges in second spaces between adjacent second channel nanostructures. The method further includes selectively removing the cap layer and the n-type work function metal layer in the p-type device region, and depositing a p-type work function metal layer over the cap layer in the n-type device region and the gate dielectric layer in the p-type device region. The p-type work function metal layer merges in the second spaces.Type: ApplicationFiled: February 10, 2023Publication date: March 21, 2024Inventors: Lung-Kun CHU, Jia-Ni YU, Chun-Fu LU, Mao-Lin HUANG, Kuo-Cheng CHIANG, Chih-Hao WANG
-
Publication number: 20240014265Abstract: The present disclosure describes a semiconductor device having an isolation structure. The semiconductor structure includes a set of nanostructures on a substrate, a gate dielectric layer wrapped around the set of nanostructures, a work function metal layer on the gate dielectric layer and around the set of nanostructures, and the isolation structure adjacent to the set of nanostructures and in contact with the work function metal layer. A portion of the work function metal layer is on a top surface of the isolation structure.Type: ApplicationFiled: March 22, 2023Publication date: January 11, 2024Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Lung-Kun CHU, Jia-Ni YU, Chun-Fu LU, Chung-Wei HSU, Mao-Lin HUANG, Kuo-Cheng CHIANG, Chih-Hao WANG