Patents by Inventor Chun-Han Lee

Chun-Han Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200295157
    Abstract: A method of forming a gate dielectric material includes forming a high-K dielectric material in a first region over a substrate, where forming the high-K dielectric material includes forming a first dielectric layer comprising hafnium over the substrate, and forming a second dielectric layer comprising lanthanum over the first dielectric layer.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 17, 2020
    Inventors: Shahaji B. More, Cheng-Han Lee, Zheng-Yang Pan, Shih-Chieh Chang, Chun-Chieh Wang
  • Patent number: 10737683
    Abstract: A method for controlling a hybrid vehicle having a motor and an engine includes: calculating a first startup reference value of the engine on the basis of requested power of the hybrid vehicle; measuring a current speed of the hybrid vehicle, and predicting a future speed of the hybrid vehicle; generating a compensation value needed to compensate for the first startup reference value of the engine on the basis of a difference between the current speed and the future speed of the hybrid vehicle; acquiring a second startup reference value of the engine by compensating for the first startup reference value on the basis of the compensation value; and controlling a startup operation of the engine according to the second startup reference value acquired through compensation.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: August 11, 2020
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Hoon Han, Joonyoung Park, Chun Hyuk Lee, In Eok Cho, Il Kwon Park, Jeamun Lee, Yong Kak Choi, Jae Yun Shim
  • Publication number: 20200243683
    Abstract: A method for forming a semiconductor device is provided. The method includes forming a gate stack to partially cover a semiconductor structure. The method also includes forming a first semiconductor material over the semiconductor structure. The method further includes forming a second semiconductor material over the first semiconductor material. In addition, the method includes forming a third semiconductor material over the second semiconductor material. The first semiconductor material and the third semiconductor material together surround the second semiconductor material. The second semiconductor material has a greater dopant concentration than that of the first semiconductor material or that of the third semiconductor material.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 30, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shahaji B. MORE, Zheng-Yang PAN, Chun-Chieh WANG, Cheng-Han LEE, Shih-Chieh CHANG
  • Patent number: 10720460
    Abstract: A method for forming a high dielectric constant (high-?) dielectric layer on a substrate including performing a pre-clean process on a surface of the substrate. A chloride precursor is introduced on the surface. An oxidant is introduced to the surface to form the high-? dielectric layer on the substrate. A chlorine concentration of the high-? dielectric layer is lower than about 8 atoms/cm3.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: July 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Han Tsai, Horng-Huei Tseng, Chun-Hao Chou, Kuo-Cheng Lee, Yung-Lung Hsu, Yun-Wei Cheng, Hsin-Chieh Huang
  • Patent number: 10714944
    Abstract: A charging circuit includes a power conversion circuit, an inductor, and at least one conversion capacitor. The power conversion circuit includes a conversion switch circuit and a conversion control circuit. The conversion switch circuit includes an upper switch, a lower switch, and at least one auxiliary switch. In a switching conversion mode, the conversion control circuit operates the conversion switch circuit to switch the inductor to plural voltage levels repetitively for converting an input power to a charging power to charge a battery by switching power conversion. In a capacitive conversion mode, the conversion control circuit operates the conversion switch circuit to switch the conversion capacitor between two of voltage division nodes periodically for converting the input power to the charging power by capacitive power conversion.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: July 14, 2020
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Wei-Jen Huang, Tsung-Han Lee, Shun-Yu Huang, Chun-Kai Chang
  • Patent number: 10672886
    Abstract: A method of forming a gate dielectric material includes forming a high-K dielectric material in a first region over a substrate, where forming the high-K dielectric material includes forming a first dielectric layer comprising hafnium over the substrate, and forming a second dielectric layer comprising lanthanum over the first dielectric layer.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: June 2, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shahaji B. More, Cheng-Han Lee, Zheng-Yang Pan, Shih-Chieh Chang, Chun-Chieh Wang
  • Publication number: 20200152742
    Abstract: The present disclosure describes an exemplary method to form p-type fully strained channel (PFSC) or an n-type fully strained channel (NFSC) that can mitigate epitaxial growth defects or structural deformations in the channel region due to processing. The exemplary method can include (i) two or more surface pre-clean treatment cycles with nitrogen trifluoride (NF3) and ammonia (NH3) plasma, followed by a thermal treatment; (ii) a prebake (anneal); and (iii) a silicon germanium epitaxial growth with a silicon seed layer, a silicon germanium seed layer, or a combination thereof.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shahaji B. More, Huai-Tei YANG, Zheng-Yang PAN, Shih-Chieh CHANG, Chun-Chieh WANG, Cheng-Han Lee
  • Patent number: 10651296
    Abstract: Methods of fabricating FinFET devices are provided. The method includes forming a fin over a substrate. The method also includes implanting a first dopant on a top surface of the fin and implanting a second dopant on a sidewall surface of the fin. The first dopant is different from the second dopant. The method further includes forming an oxide layer on the top surface and the sidewall surface of the fin, and forming a gate electrode layer over the oxide layer.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: May 12, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Han Wu, Tong-Min Weng, Chun-Yi Huang, Po-Ching Lee, Chih-Hsuan Hsieh, Shu-Ching Tsai
  • Publication number: 20200135550
    Abstract: In an embodiment, a method includes: forming a differential contact etch stop layer (CESL) having a first portion over a source/drain region and a second portion along a gate stack, the source/drain region being in a substrate, the gate stack being over the substrate proximate the source/drain region, a first thickness of the first portion being greater than a second thickness of the second portion; depositing a first interlayer dielectric (ILD) over the differential CESL; forming a source/drain contact opening in the first ILD; forming a contact spacer along sidewalls of the source/drain contact opening; after forming the contact spacer, extending the source/drain contact opening through the differential CESL; and forming a first source/drain contact in the extended source/drain contact opening, the first source/drain contact physically and electrically coupling the source/drain region, the contact spacer physically separating the first source/drain contact from the first ILD.
    Type: Application
    Filed: June 3, 2019
    Publication date: April 30, 2020
    Inventors: Chun-Han Chen, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang, Chung-Ting Ko, Jr-Hung Li, Chi On Chui
  • Patent number: 10636824
    Abstract: A method for forming a high dielectric constant (high-?) dielectric layer on a substrate including performing a pre-clean process on a surface of the substrate. A chloride precursor is introduced on the surface. An oxidant is introduced to the surface to form the high-? dielectric layer on the substrate. A chlorine concentration of the high-? dielectric layer is lower than about 8 atoms/cm3.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: April 28, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Han Tsai, Horng-Huei Tseng, Chun-Hao Chou, Kuo-Cheng Lee, Yung-Lung Hsu, Yun-Wei Cheng, Hsin-Chieh Huang
  • Patent number: 10636909
    Abstract: A method for forming a semiconductor device is provided. The method includes forming a gate stack to partially cover a semiconductor structure. The method also includes forming a first semiconductor material over the semiconductor structure. The method further includes forming a second semiconductor material over the first semiconductor material. In addition, the method includes forming a third semiconductor material over the second semiconductor material. The first semiconductor material and the third semiconductor material together surround the second semiconductor material. The second semiconductor material has a greater dopant concentration than that of the first semiconductor material or that of the third semiconductor material.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: April 28, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shahaji B. More, Zheng-Yang Pan, Chun-Chieh Wang, Cheng-Han Lee, Shih-Chieh Chang
  • Publication number: 20200127024
    Abstract: A method for forming a high dielectric constant (high-?) dielectric layer on a substrate including performing a pre-clean process on a surface of the substrate. A chloride precursor is introduced on the surface. An oxidant is introduced to the surface to form the high-? dielectric layer on the substrate. A chlorine concentration of the high-? dielectric layer is lower than about 8 atoms/cm3.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Tsung-Han Tsai, Horng-Huei Tseng, Chun-Hao Chou, Kuo-Cheng Lee, Yung-Lung Hsu, Yun-Wei Cheng, Hsin-Chieh Huang
  • Publication number: 20200105534
    Abstract: A FinFET device and method of forming the same are disclosed. The method includes forming a gate dielectric layer and depositing a metal oxide layer over the gate dielectric layer. The method also includes annealing the gate dielectric layer and the metal oxide layer, causing ions to diffuse from the metal oxide layer to the gate dielectric layer to form a doped gate dielectric layer. The method also includes forming a work function layer over the doped gate dielectric layer, and forming a gate electrode over the work function layer.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 2, 2020
    Inventors: Chun-Chieh Wang, Zheng-Yang Pan, Shih-Chieh Chang, Cheng-Han Lee, Huai-Tei Yang, Shahaji B. More
  • Publication number: 20200105805
    Abstract: A semiconductor device includes a semiconductor substrate, a radiation-sensing region, at least one isolation structure, and a doped passivation layer. The radiation-sensing region is present in the semiconductor substrate. The isolation structure is present in the semiconductor substrate and adjacent to the radiation-sensing region. The doped passivation layer at least partially surrounds the isolation structure in a substantially conformal manner.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 2, 2020
    Inventors: Tsung-Han Tsai, Yun-Wei Cheng, Kuo-Cheng Lee, Chun-Hao Chou, Yung-Lung Hsu
  • Publication number: 20200098799
    Abstract: Some embodiments relate to a device array including a plurality of devices arranged in a semiconductor substrate. A protection ring circumscribes an outer perimeter of the device array. The protection ring includes a first ring neighboring the device array, a second ring circumscribing the first ring and meeting the first ring at a first p-n junction, and a third ring circumscribing the second ring and meeting the second ring at a second p-n junction. The first ring has a first width, the second ring has a second width, and the third ring has a third width. At least two of the first width, the second width, and the third width are different from one another.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Tsung-Han Tsai, Chun-Hao Chou, Kuo-Cheng Lee, Yung-Lung Hsu, Yun-Wei Cheng
  • Publication number: 20200043924
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a first gate structure formed over a fin structure, and a first capping layer formed over the first gate structure. The FinFET device structure includes a first etching stop layer formed over the first capping layer and the first gate structure, and a top surface and a sidewall surface of the first capping layer are in direct contact with the first etching stop layer.
    Type: Application
    Filed: October 8, 2019
    Publication date: February 6, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Han CHEN, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG, Jr-Hung LI, Bo-Cyuan LU
  • Publication number: 20200035815
    Abstract: Methods of fabricating FinFET devices are provided. The method includes forming a fin over a substrate. The method also includes implanting a first dopant on a top surface of the fin and implanting a second dopant on a sidewall surface of the fin. The first dopant is different from the second dopant. The method further includes forming an oxide layer on the top surface and the sidewall surface of the fin, and forming a gate electrode layer over the oxide layer.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 30, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsung-Han WU, Tong-Min WENG, Chun-Yi HUANG, Po-Ching LEE, Chih-Hsuan HSIEH, Shu-Ching TSAI
  • Patent number: 10546890
    Abstract: Some embodiments relate to a device array including a plurality of devices arranged in a semiconductor substrate. A protection ring circumscribes an outer perimeter of the device array. The protection ring includes a first ring neighboring the device array, a second ring circumscribing the first ring and meeting the first ring at a first p-n junction, and a third ring circumscribing the second ring and meeting the second ring at a second p-n junction. The first ring has a first width, the second ring has a second width, and the third ring has a third width. At least two of the first width, the second width, and the third width are different from one another.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: January 28, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Han Tsai, Chun-Hao Chou, Kuo-Cheng Lee, Yung-Lung Hsu, Yun-Wei Cheng
  • Publication number: 20200020725
    Abstract: A semiconductor device includes a semiconductor substrate, a radiation-sensing region, at least one isolation structure, and a doped passivation layer. The radiation-sensing region is present in the semiconductor substrate. The isolation structure is present in the semiconductor substrate and adjacent to the radiation-sensing region. The doped passivation layer at least partially surrounds the isolation structure in a substantially conformal manner.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 16, 2020
    Inventors: Tsung-Han Tsai, Yun-Wei Cheng, Kuo-Cheng Lee, Chun-Hao Chou, Yung-Lung Hsu
  • Publication number: 20200020593
    Abstract: An embodiment is a method including forming a first fin in a first region of a substrate and a second fin in a second region of the substrate, forming a first isolation region on the substrate, the first isolation region surrounding the first fin and the second fin, forming a first dummy gate over the first fin and a second dummy gate over the second fin, the first dummy gate and the second dummy gate having a same longitudinal axis, replacing the first dummy gate with a first replacement gate and the second dummy gate with a second replacement gate, forming a first recess between the first replacement gate and the second replacement gate, and a filling an insulating material in the first recess to form a second isolation region.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 16, 2020
    Inventors: Chih-Han Lin, Jr-Jung Lin, Chun-Hung Lee