Patents by Inventor Chun-Hao Chiu

Chun-Hao Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955515
    Abstract: A semiconductor device with dual side source/drain (S/D) contact structures and a method of fabricating the same are disclosed. The method includes forming a fin structure on a substrate, forming a superlattice structure on the fin structure, forming first and second S/D regions within the superlattice structure, forming a gate structure between the first and second S/D regions, forming first and second contact structures on first surfaces of the first and second S/D regions, and forming a third contact structure, on a second surface of the first S/D region, with a work function metal (WFM) silicide layer and a dual metal liner. The second surface is opposite to the first surface of the first S/D region and the WFM silicide layer has a work function value closer to a conduction band energy than a valence band energy of a material of the first S/D region.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Chuan Chiu, Chia-Hao Chang, Cheng-Chi Chuang, Chih-Hao Wang, Huan-Chieh Su, Chun-Yuan Chen, Li-Zhen Yu, Yu-Ming Lin
  • Patent number: 11940388
    Abstract: Example methods are provided to improve placement of an adaptor (210,220) to a mobile computing device (100) to measure a test strip (221) coupled to the adaptor (220) with a camera (104) and a screen (108) on a face of the mobile computing device (100). The method may include displaying a light area on a first portion of the screen (108). The first portion may be adjacent to the camera (104). The light area and the camera (104) may be aligned with a key area of the test strip (221) so that the camera (104) is configured to capture an image of the key area. The method may further include providing first guiding information for a user to place the adaptor (210,220) to the mobile computing device (100) according to a position of the light area on the screen (108).
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: March 26, 2024
    Assignee: IXENSOR CO., LTD.
    Inventors: Yenyu Chen, An Cheng Chang, Tai I Chen, Su Tung Yang, Chih Jung Hsu, Chun Cheng Lin, Min Han Wang, Shih Hao Chiu
  • Publication number: 20240096701
    Abstract: A device includes: a stack of semiconductor nanostructures; a gate structure wrapping around the semiconductor nanostructures, the gate structure extending in a first direction; a source/drain region abutting the gate structure and the stack in a second direction transverse the first direction; a contact structure on the source/drain region; a backside conductive trace under the stack, the backside conductive trace extending in the second direction; a first through via that extends vertically from the contact structure to a top surface of the backside dielectric layer; and a gate isolation structure that abuts the first through via in the second direction.
    Type: Application
    Filed: May 17, 2023
    Publication date: March 21, 2024
    Inventors: Chun-Yuan CHEN, Huan-Chieh SU, Ching-Wei TSAI, Shang-Wen CHANG, Yi-Hsun CHIU, Chih-Hao WANG
  • Patent number: 11923393
    Abstract: A semiconductor image sensor includes a pixel. The pixel includes a first substrate; and a photodiode in the first substrate. The semiconductor image sensor further includes an interconnect structure electrically connected to the pixel. The semiconductor image sensor further includes a reflection structure between the interconnect and the photodiode, wherein the reflection structure is configured to reflect light passing through the photodiode back toward the photodiode.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Liang Lu, Cheng-Hao Chiu, Huan-En Lin, Chun-Hao Chou, Kuo-Cheng Lee
  • Patent number: 11728252
    Abstract: A semiconductor device package includes a first conductive base, a first insulation layer and a second insulation layer. The first conductive base has a first surface, a second surface opposite to the first surface and a lateral surface extended between the first surface and the second surface. The lateral surface includes a first portion adjacent to the first surface and a second portion adjacent to the second surface. The first insulation layer comprises a first insulation material. The first insulation layer has a first surface and a second surface opposite to the first surface. The first insulation layer covers the first portion of the lateral surface of the first conductive base. The second insulation layer comprises a second insulation material and covers the second portion of the lateral surface of the first conductive base. The first insulation material is different from the second insulation material.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: August 15, 2023
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Hui Hua Lee, Chun Hao Chiu, Hui-Ying Hsieh, Kuo-Hua Chen, Chi-Tsung Chiu
  • Publication number: 20220084914
    Abstract: A semiconductor package structure is provided. The semiconductor package structure includes a lead frame and passive component. The lead frame includes a paddle and a plurality of leads. The lead frame includes a first surface and a second surface opposite to the first surface. The passive component includes an external connector. A pattern of the external connector is corresponding to a pattern of the plurality of leads of the lead frame.
    Type: Application
    Filed: September 16, 2020
    Publication date: March 17, 2022
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Chi-Tsung CHIU, Hui-Ying HSIEH, Chun Hao CHIU, Chiuan-You DING
  • Publication number: 20200243427
    Abstract: A semiconductor device package includes a first conductive base, a first insulation layer and a second insulation layer. The first conductive base has a first surface, a second surface opposite to the first surface and a lateral surface extended between the first surface and the second surface. The lateral surface includes a first portion adjacent to the first surface and a second portion adjacent to the second surface. The first insulation layer comprises a first insulation material. The first insulation layer has a first surface and a second surface opposite to the first surface. The first insulation layer covers the first portion of the lateral surface of the first conductive base. The second insulation layer comprises a second insulation material and covers the second portion of the lateral surface of the first conductive base. The first insulation material is different from the second insulation material.
    Type: Application
    Filed: April 10, 2020
    Publication date: July 30, 2020
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Hui Hua LEE, Chun Hao CHIU, Hui-Ying Hsieh, Kuo-Hua CHEN, Chi-Tsung CHIU
  • Patent number: 10707157
    Abstract: A semiconductor device package includes a first conductive base, a first insulation layer and a second insulation layer. The first conductive base has a first surface, a second surface opposite to the first surface and a lateral surface extended between the first surface and the second surface. The lateral surface includes a first portion adjacent to the first surface and a second portion adjacent to the second surface. The first insulation layer comprises a first insulation material. The first insulation layer has a first surface and a second surface opposite to the first surface. The first insulation layer covers the first portion of the lateral surface of the first conductive base. The second insulation layer comprises a second insulation material and covers the second portion of the lateral surface of the first conductive base. The first insulation material is different from the second insulation material.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: July 7, 2020
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Hui Hua Lee, Chun Hao Chiu, Hui-Ying Hsieh, Kuo-Hua Chen, Chi-Tsung Chiu
  • Publication number: 20170365543
    Abstract: A semiconductor device package includes a first conductive base, a first insulation layer and a second insulation layer. The first conductive base has a first surface, a second surface opposite to the first surface and a lateral surface extended between the first surface and the second surface. The lateral surface includes a first portion adjacent to the first surface and a second portion adjacent to the second surface. The first insulation layer comprises a first insulation material. The first insulation layer has a first surface and a second surface opposite to the first surface. The first insulation layer covers the first portion of the lateral surface of the first conductive base. The second insulation layer comprises a second insulation material and covers the second portion of the lateral surface of the first conductive base. The first insulation material is different from the second insulation material.
    Type: Application
    Filed: June 13, 2017
    Publication date: December 21, 2017
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Hui Hua LEE, Chun Hao CHIU, Hui-Ying Hsieh, Kuo-Hua CHEN, Chi-Tsung CHIU
  • Patent number: 8366994
    Abstract: A method for manufacturing a cobalt (Co) alloy-based ceramic composite sputtering target is provided. A cobalt ingot and a chromium (Cr) ingot are melted in vacuum and then nebulized to form a cobalt-chromium (CoCr) alloy powder. Additionally, a ceramic powder and a platinum powder are wetly mixed to form a platinum-ceramic (Pt-ceramic) slurry, in which the ceramic powder is applied onto the platinum powder's surface uniformly. Next, the CoCr alloy powder and the Pt-ceramic slurry are wetly mixed to form a CoCrPt-ceramic slurry. Thereafter, the CoCrPt-ceramic slurry is dried, molded and compressed to form the cobalt alloy-based ceramic composite sputtering target. The resulted cobalt alloy-based ceramic composite sputtering target, which has a fine and dense structure, uniform composition and lower magnetic permeability, is beneficial to a magnetron sputter deposition process, as well as a film sputtering process used in the magnetic recording industry.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: February 5, 2013
    Assignee: China Steel Corporation
    Inventors: Rong-Zhi Chen, Chun-Hao Chiu, Jui-Tung Chang, Deng-Far Hsu, Chih-Huang Lai
  • Publication number: 20120052288
    Abstract: A film structure is described. The film structure includes a substrate and a metal film. The film structure is formed on the substrate by a physical vapor deposition method. A bottom diameter of particles forming the metal film is substantially between 0.05 ?m and 2 ?m, and a height of the particles of the metal film is substantially between 0.05 ?m and 3 ?m. The metal film has a brightness, a first chroma and a second chroma in a visible light region, which includes a wavelength range between 380 nm and 770 nm, the brightness is substantially between 65 and 95, the first chroma is substantially between ?2.1 and 2.1, and the second chroma is substantially between ?2.1 and 2.
    Type: Application
    Filed: December 7, 2010
    Publication date: March 1, 2012
    Applicant: CHINA STEEL CORPORATION
    Inventors: Huan-Chien TUNG, Jye-Long LEE, Chun-Hao CHIU
  • Publication number: 20110241253
    Abstract: A method for manufacturing a cobalt (Co) alloy-based ceramic composite sputtering target is provided. A cobalt ingot and a chromium (Cr) ingot are melted in vacuum and then nebulized to form a cobalt-chromium (CoCr) alloy powder. Additionally, a ceramic powder and a platinum powder are wetly mixed to form a platinum-ceramic (Pt-ceramic) slurry, in which the ceramic powder is applied onto the platinum powder's surface uniformly. Next, the CoCr alloy powder and the Pt-ceramic slurry are wetly mixed to form a CoCrPt-ceramic slurry. Thereafter, the CoCrPt-ceramic slurry is dried, molded and compressed to form the cobalt alloy-based ceramic composite sputtering target. The resulted cobalt alloy-based ceramic composite sputtering target, which has a fine and dense structure, uniform composition and lower magnetic permeability, is beneficial to a magnetron sputter deposition process, as well as a film sputtering process used in the magnetic recording industry.
    Type: Application
    Filed: November 4, 2010
    Publication date: October 6, 2011
    Applicant: CHINA STEEL CORPORATION
    Inventors: Rong-Zhi CHEN, Chun-Hao CHIU, Jui-Tung CHANG, Deng-Far HSU, Chih-Huang LAI