Patents by Inventor Chun-Hao Chou
Chun-Hao Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250008244Abstract: A stacked CMOS image sensor (CIS) structure is provided. The stacked CIS structure comprises a first die, a second die and a third die. The first die comprises a photodiode, a transfer gate, a selective conversion gain (SCG) switch, a reset switch, a floating node diffusion capacitor and a SCG diffusion capacitor. The second die comprises a source follower transistor and a row select switch. The third die comprises an image sensing circuit electrically connected to the third floating node.Type: ApplicationFiled: June 29, 2023Publication date: January 2, 2025Inventors: MING-HSIEN YANG, CHIA-YU WEI, CHUN-HAO CHOU, KUO-CHENG LEE, CHUNG-LIANG CHENG, SHENG-CHAU CHEN
-
Patent number: 12183751Abstract: Implementations described herein reduce electron-hole pair generation due to silicon dangling bonds in pixel sensors. In some implementations, the silicon dangling bonds in a pixel sensor may be passivated by silicon-fluorine (Si—F) bonding in various portions of the pixel sensor such as a transfer gate contact via or a shallow trench isolation region, among other examples. The silicon-fluorine bonds are formed by fluorine implantation and/or another type of semiconductor processing operation. In some implementations, the silicon-fluorine bonds are formed as part of a cleaning operation using fluorine (F) such that the fluorine may bond with the silicon of the pixel sensor. Additionally, or alternatively, the silicon-fluorine bonds are formed as part of a doping operation in which boron (B) and/or another p-type doping element is used with fluorine such that the fluorine may bond with the silicon of the pixel sensor.Type: GrantFiled: September 23, 2021Date of Patent: December 31, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Wei-Lin Chen, Chun-Hao Chou, Kuo-Cheng Lee
-
Patent number: 12183753Abstract: An image sensor includes a first photodiode and a second photodiode. The image sensor further includes a first color filter over the first photodiode; and a second color filter over the second photodiode. The image sensor further includes a first microlens over the first color filter and a second microlens over the second color filter. The image sensor further includes a first electro-optical (EO) film between the first color filter and the first microlens, wherein a material of the first EO film is configured to change refractive index in response to application of an electrical field. The image sensor further includes a second EO film between the second color filter and the second microlens, wherein a material of the second EO film is configured to change refractive index in response to application of an electrical field.Type: GrantFiled: September 24, 2021Date of Patent: December 31, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Wei-Lin Chen, Ching-Chung Su, Chun-Hao Chou, Kuo-Cheng Lee
-
Patent number: 12176361Abstract: A method of detecting electromagnetic radiation includes illuminating a photodiode of a pixel sensor with electromagnetic radiation, using vertical gate structures of a transfer transistor to couple a cathode of the photodiode to an internal node of the pixel sensor, thereby generating an internal node voltage level, and generating an output voltage level of the pixel sensor based on the internal node voltage level.Type: GrantFiled: July 22, 2022Date of Patent: December 24, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Kun-Huei Lin, Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Chun-Wei Chia
-
Patent number: 12170302Abstract: Some aspects of the present disclosure relate to a method. In the method, a semiconductor substrate is received. A photodetector is formed in the semiconductor substrate. An interconnect structure is formed over the photodetector and over a frontside of the semiconductor substrate. A backside of the semiconductor substrate is thinned, the backside being furthest from the interconnect structure. A ring-shaped structure is formed so as to extend into the thinned backside of the semiconductor substrate to laterally surround the photodetector. A series of trench structures are formed to extend into the thinned backside of the semiconductor substrate. The series of trench structures are laterally surrounded by the ring-shaped structure and extend into the photodetector.Type: GrantFiled: February 9, 2023Date of Patent: December 17, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee
-
Patent number: 12170234Abstract: A semiconductor device includes a first wafer and a second wafer. The semiconductor device includes a seal ring structure comprising a first metal structure in a body of the first wafer, a second metal structure in the body of the first wafer, a third metal structure in a body of the second wafer, and a metal bonding structure including a first set of metal elements coupling the first metal structure and the third metal structure through an interface between the first wafer and the second wafer, and a second set of metal elements coupling the second metal structure and the third metal structure through the interface between the first wafer and the second wafer.Type: GrantFiled: June 15, 2023Date of Patent: December 17, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chun-Liang Lu, Chun-Wei Chia, Chun-Hao Chou, Kuo-Cheng Lee
-
Publication number: 20240405053Abstract: Some implementations described herein include a complementary metal oxide semiconductor image sensor device and techniques to form the complementary metal oxide semiconductor image sensor device. The complementary metal oxide semiconductor image sensor device includes a includes a first array of photodiodes stacked over a second array of photodiodes. A polarization structure is between the first array of photodiodes and the second array of photodiodes. Signaling generated by the first array of photodiodes (e.g., signaling corresponding to unpolarized light waves) may be multiplexed with signaling generated by the second array of photodiodes (e.g., signaling corresponding to polarized light waves). The complementary metal oxide semiconductor image sensor device further includes a filter structure that filters visible light waves and near infrared light waves amongst the first array of photodiodes and the second array of photodiodes.Type: ApplicationFiled: May 31, 2023Publication date: December 5, 2024Inventors: Chun-Liang LU, Wei-Lin CHEN, Chun-Hao CHOU, Kuo-Cheng LEE
-
Publication number: 20240395785Abstract: A method and wafer stack that includes a first wafer component, a second wafer component, and third wafer component. The first wafer component includes a frontside and a backside. The wafer stack also includes a second wafer component having a frontside and a backside, such that the frontside of the second wafer component is bonded to the frontside of the first wafer component. In addition, the wafer stack includes a third wafer component having a frontside and a backside, such that the frontside of the third wafer component is bonded to the backside of the second wafer component. The first wafer component includes a composite metal grid array with one or more photodiodes formed on the backside.Type: ApplicationFiled: May 23, 2023Publication date: November 28, 2024Inventors: Ming-Hsien Yang, Chun-Hao Chou, Chia-Yu Wei, Kuo-Cheng Lee, Chung-Liang Cheng, Sheng-Chau Chen
-
Publication number: 20240387574Abstract: Implementations described herein reduce electron-hole pair generation due to silicon dangling bonds in pixel sensors. In some implementations, the silicon dangling bonds in a pixel sensor may be passivated by silicon-fluorine (Si—F) bonding in various portions of the pixel sensor such as a transfer gate contact via or a shallow trench isolation region, among other examples. The silicon-fluorine bonds are formed by fluorine implantation and/or another type of semiconductor processing operation. In some implementations, the silicon-fluorine bonds are formed as part of a cleaning operation using fluorine (F) such that the fluorine may bond with the silicon of the pixel sensor. Additionally, or alternatively, the silicon-fluorine bonds are formed as part of a doping operation in which boron (B) and/or another p-type doping element is used with fluorine such that the fluorine may bond with the silicon of the pixel sensor.Type: ApplicationFiled: July 29, 2024Publication date: November 21, 2024Inventors: Wei-Lin CHEN, Chun-Hao CHOU, Kuo-Cheng LEE
-
Publication number: 20240387599Abstract: An array of nanoscale structures over photodiodes of a pixel array improves quantum efficiency (QE) for shorter wavelengths of light, such as green light and blue light. The nanoscale structures may be used without high absorption (HA) structures (e.g., when the pixel array is configured only for visible light) or may at least partially surround HA structures (e.g., when the pixel array is configured both for visible light and near infrared light). Additionally, the array of nanoscale structures may be formed using photolithography such that the nanoscale structures are approximately spaced at regular intervals. Therefore, QE for the pixel array is improved more than if the array of nanoscale structures were to be formed using a random (or quasi-random) process.Type: ApplicationFiled: May 17, 2023Publication date: November 21, 2024Inventors: Wei-Lin CHEN, Chun-Hao CHOU, Kun-Hui LIN, Kuo-Cheng LEE
-
Publication number: 20240379611Abstract: Some implementations described herein provide a semiconductor structure. The semiconductor structure includes a first wafer including a first metal structure within a body of the first wafer. The semiconductor structure also includes a second wafer including a second metal structure within a body of the second wafer, where the first wafer is coupled to the second wafer at an interface. The semiconductor structure further includes a metal bonding structure coupled to the first metal structure and the second metal structure and extending through the interface.Type: ApplicationFiled: July 25, 2024Publication date: November 14, 2024Inventors: Chun-Liang LU, Wei-Lin CHEN, Chun-Hao CHOU, Kuo-Cheng LEE
-
Publication number: 20240380986Abstract: An image sensor device has a first number of first pixels disposed in a substrate and a second number of second pixels disposed in the substrate. The first number is substantially equal to the second number. A light-blocking structure disposed over the first pixels and the second pixels. The light-blocking structure defines a plurality of first openings and second openings through which light can pass. The first openings are disposed over the first pixels. The second openings are disposed over the second pixels. The second openings are smaller than the first openings. A microcontroller is configured to turn on different ones of the second pixels at different points in time.Type: ApplicationFiled: July 24, 2024Publication date: November 14, 2024Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Hsin-Chi Chen
-
Publication number: 20240373145Abstract: An image sensor includes a photosensitive sensor, a floating diffusion node, a reset transistor, and a source follower transistor. The reset transistor comprises a first source/drain coupled to the floating diffusion node and a second source/drain coupled to a first voltage source. The source follower transistor comprises a gate coupled to the floating diffusion node and a first source/drain coupled to the second source/drain of the reset transistor. A first elongated contact contacts the second source/drain of the reset transistor and the first source/drain of the source follower transistor. The first elongated contact has a first dimension in a horizontal cross-section and a second dimension in the horizontal cross-section. The second dimension is perpendicular to the first dimension, and the second dimension is less than the first dimension.Type: ApplicationFiled: July 11, 2024Publication date: November 7, 2024Inventors: Yun-Wei CHENG, Chia CHUN-WEI, Chun-Hao CHOU, Kuo-Cheng LEE
-
Publication number: 20240355847Abstract: A CMOS image sensor includes a unit pixel array including a photodiode array, a color filter array, a micro-lens array, and a grid isolation structure laterally separating adjacent color filters. The grid isolation structure includes a first low-n grid, a second low-n grid underlying the first low-n grid, and a metal grid within the second low-n grid, the first low-n grid being narrower than the second low-n grid. The color filter array includes color filter matrixes, all color filter matrixes have the same arrangement pattern. Sizes of color filters in each color filter matrix vary depending on locations of the color filters in the color filter matrix. In an edge portion, a distance between a center of a color filter matrix and a center of a corresponding unit pixel matrix in plan view varies depending on a location of the unit pixel matrix in the CMOS image sensor.Type: ApplicationFiled: April 20, 2023Publication date: October 24, 2024Inventors: Ming-Hsien YANG, Wei-Chih WENG, Chun-Wei CHIA, Chun-Hao CHOU, Tse Yu TU, Chien Nan TU, Chun-Liang LU, Kuo-Cheng LEE
-
Patent number: 12113042Abstract: Some implementations described herein provide a semiconductor structure. The semiconductor structure includes a first wafer including a first metal structure within a body of the first wafer. The semiconductor structure also includes a second wafer including a second metal structure within a body of the second wafer, where the first wafer is coupled to the second wafer at an interface. The semiconductor structure further includes a metal bonding structure coupled to the first metal structure and the second metal structure and extending through the interface.Type: GrantFiled: October 6, 2021Date of Patent: October 8, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chun-Liang Lu, Wei-Lin Chen, Chun-Hao Chou, Kuo-Cheng Lee
-
Patent number: 12113086Abstract: Apparatus and methods for sensing long wavelength light are described herein. A semiconductor device includes: a carrier; a device layer on the carrier; a semiconductor layer on the device layer, and an insulation layer on the semiconductor layer. The semiconductor layer includes isolation regions and pixel regions. The isolation regions are or include a first semiconductor material. The pixel regions are or include a second semiconductor material that is different from the first semiconductor material.Type: GrantFiled: August 9, 2023Date of Patent: October 8, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Ying-Hao Chen
-
Publication number: 20240332115Abstract: The present disclosure describes heat dissipation structures formed in functional or non-functional areas of a three-dimensional chip structure. These heat dissipation structures are configured to route the heat generated within the three-dimensional chip structure to designated areas on or outside the three-dimensional chip structure. For example, the three-dimensional chip structure can include a plurality of chips vertically stacked on a substrate, a first passivation layer interposed between a first chip and a second chip of the plurality of chips, and a heat dissipation layer embedded in the first passivation layer and configured to allow conductive structures to pass through.Type: ApplicationFiled: June 11, 2024Publication date: October 3, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yun-Wei CHENG, Chun-Hao CHOU, Kuo-Cheng LEE, Ying-Hao CHEN
-
Publication number: 20240304653Abstract: Some implementations described herein provide an optoelectronic device and methods of formation. The optoelectronic device is fabricated using a series of operations that includes a patterning operation using a layer of a negative photoresist material, followed by a single dry etch operation, a single wet strip operation, and a single wet etch operation. The series of operations may include a reduced number of operations relative to another series of operations that include a patterning operation using a layer of a positive photoresist material. Through the reduced number of operations, handling-induced damage to the device may be reduced. Additionally, the high absorption structure may include a quantum efficiency that is greater relative to another quantum efficiency of another high absorption structure formed through the series of operations that include the patterning operation using the layer of the positive photoresist material.Type: ApplicationFiled: March 10, 2023Publication date: September 12, 2024Inventors: Chun-Liang LU, Chun-Hao CHOU, Kuo-Cheng LEE, Wei-Lin CHEN
-
Patent number: 12088940Abstract: An image sensor includes a photosensitive sensor, a floating diffusion node, a reset transistor, and a source follower transistor. The reset transistor comprises a first source/drain coupled to the floating diffusion node and a second source/drain coupled to a first voltage source. The source follower transistor comprises a gate coupled to the floating diffusion node and a first source/drain coupled to the second source/drain of the reset transistor. A first elongated contact contacts the second source/drain of the reset transistor and the first source/drain of the source follower transistor. The first elongated contact has a first dimension in a horizontal cross-section and a second dimension in the horizontal cross-section. The second dimension is perpendicular to the first dimension, and the second dimension is less than the first dimension.Type: GrantFiled: July 3, 2023Date of Patent: September 10, 2024Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Yun-Wei Cheng, Chia Chun-Wei, Chun-Hao Chou, Kuo-Cheng Lee
-
Patent number: 12081866Abstract: An image sensor including a semiconductor substrate, a plurality of color filters, a plurality of first lenses and a second lens is provided. The semiconductor substrate includes a plurality of sensing pixels arranged in array, and each of the plurality of sensing pixels respectively includes a plurality of image sensing units and a plurality of phase detection units. The color filters at least cover the plurality of image sensing units. The first lenses are disposed on the plurality of color filters. Each of the plurality of first lenses respectively covers one of the plurality of image sensing units. The second lens is disposed on the plurality of color filters and the second lens covers the plurality of phase detection units.Type: GrantFiled: June 1, 2023Date of Patent: September 3, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yun-Wei Cheng, Chun-Hao Chou, Hsin-Chi Chen, Kuo-Cheng Lee, Hsun-Ying Huang