Patents by Inventor Chun-Hsiung Tsai

Chun-Hsiung Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200350430
    Abstract: A method includes forming a first channel region and a first gate structure formed over the first channel region. A first source/drain region is formed adjacent the first channel region and the first source/drain region includes a crystalline structure doped with a first dopant. A first silicide is formed over the first source/drain region. The first source/drain region includes a first concentration of the first dopant between 2.0×1021 atoms per centimeter cubed and 4.0×1021 atoms per centimeter cubed at a depth of 8 to 10 nanometers.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Publication number: 20200343127
    Abstract: In a method of manufacturing a semiconductor device including a field effect transistor (FET), a sacrificial region is formed in a substrate, and a trench is formed in the substrate. A part of the sacrificial region is exposed in the trench. A space is formed by at least partially etching the sacrificial region, an isolation insulating layer is formed in the trench and the space, and a gate structure and a source/drain region are formed. An air spacer is formed in the space under the source/drain region.
    Type: Application
    Filed: December 31, 2019
    Publication date: October 29, 2020
    Inventors: Clement Hsingjen WANN, Chun Hsiung TSAI, Shahaji B. MORE, Che-Chih HSU, Chinyu SU, Po-Han TSENG, Wen Han HUNG
  • Publication number: 20200343339
    Abstract: A semiconductor device including a FET includes an isolation insulating layer disposed in a trench of the substrate, a gate dielectric layer disposed over a channel region of the substrate, a gate electrode disposed over the gate dielectric layer, a source and a drain disposed adjacent to the channel region, and an embedded insulating layer disposed below the source, the drain and the gate electrode and both ends of the embedded insulating layer are connected to the isolation insulating layer.
    Type: Application
    Filed: April 23, 2020
    Publication date: October 29, 2020
    Inventors: Chun Hsiung TSAI, Chih-Hsin KO, Clement Hsingjen WANN, Ya-Yun CHENG
  • Publication number: 20200343373
    Abstract: In a method of manufacturing a semiconductor device including a field effect transistor (FET), a sacrificial region is formed in a substrate, and a trench is formed in the substrate. A part of the sacrificial region is exposed in the trench. A space is formed by at least partially etching the sacrificial region, an isolation insulating layer is formed in the trench and the space, and a gate structure and a source/drain region are formed. An air spacer is formed in the space under the source/drain region.
    Type: Application
    Filed: April 23, 2020
    Publication date: October 29, 2020
    Inventors: Chun Hsiung TSAI, Clement Hsingjen WANN, Kuo-Feng YU, Yi-Tang LIN, Yu-Ming LIN
  • Publication number: 20200343088
    Abstract: A method includes receiving a structure having a substrate, a conductive feature over the substrate, and a dielectric layer over the conductive feature. The method further includes forming a hole in the dielectric layer to expose the conductive feature; forming a first metal-containing layer on sidewalls of the hole; and forming a second metal-containing layer in the hole and surrounded by the first metal-containing layer. The first and the second metal-containing layers include different materials. The method further includes applying a first chemical to recess the dielectric layer, resulting in a top portion of the first and the second metal-containing layers protruding above the dielectric layer; and applying a second chemical having fluorine or chlorine to the top portion of the first metal-containing layer to convert the top portion of the first metal-containing layer into a metal fluoride or a metal chloride.
    Type: Application
    Filed: January 6, 2020
    Publication date: October 29, 2020
    Inventors: Ru-Shang Hsiao, Chun Hsiung Tsai, Clement Hsingjen Wann
  • Patent number: 10804395
    Abstract: The present disclosure provides a semiconductor device structure in accordance with some embodiments. In some embodiments, the semiconductor device structure includes a semiconductor substrate of a first semiconductor material and having first recesses. The semiconductor device structure further includes a first gate stack formed on the semiconductor substrate and being adjacent the first recesses. In some examples, a passivation material layer of a second semiconductor material is formed in the first recesses. In some embodiments, first source and drain (S/D) features of a third semiconductor material are formed in the first recesses and are separated from the semiconductor substrate by the passivation material layer. In some cases, the passivation material layer is free of chlorine.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: October 13, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun Hsiung Tsai, Yuan-Ko Hwang
  • Publication number: 20200303549
    Abstract: A method for forming a FinFET device structure is provided. The method includes forming a fin structure extended above a substrate and forming a gate structure formed over a portion of the fin structure. The method also includes forming a source/drain (S/D) structure over the fin structure, and the S/D structure is adjacent to the gate structure. The method further includes doping an outer portion of the S/D structure to form a doped region, and the doped region includes gallium (Ga). The method includes forming a metal silicide layer over the doped region; and forming an S/D contact structure over the metal silicide layer.
    Type: Application
    Filed: June 11, 2020
    Publication date: September 24, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Hsiung TSAI, Shahaji B. MORE, Cheng-Yi PENG, Yu-Ming LIN, Kuo-Feng YU, Ziwei FANG
  • Patent number: 10777641
    Abstract: The present disclosure provides an LDD-free semiconductor structure including a semiconductor layer, a gate over the semiconductor layer and a regrowth region made of semiconductor material positioned in the semiconductor layer. The regrowth region forms a source region or a drain region of the LDD-free semiconductor structure. The gate includes a gate electrode layer laterally covered by a gate spacer. The regrowth region extends towards a region beneath the gate spacer and close to a plane extending along a junction of the gate spacer and the gate electrode layer. The present disclosure also provides a method for manufacturing an LDD-free semiconductor structure. The method includes forming a gate over a semiconductor layer, removing a portion of the semiconductor layer and obtaining a recess, and forming a regrowth region over the recess.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: September 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD
    Inventor: Chun Hsiung Tsai
  • Publication number: 20200279846
    Abstract: A fin-type field effect transistor comprising a substrate, at least one gate stack and epitaxy material portions is described. The substrate has fins and insulators located between the fins, and the fins include channel portions and flank portions beside the channel portions. The at least one gate stack is disposed over the insulators and over the channel portions of the fins. The epitaxy material portions are disposed over the flank portions of the fins and at two opposite sides of the at least one gate stack. The epitaxy material portions disposed on the flank portions of the fins are separate from one another.
    Type: Application
    Filed: April 20, 2020
    Publication date: September 3, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hsiung Tsai, Ziwei Fang, Tsan-Chun Wang, Kei-Wei Chen
  • Publication number: 20200279949
    Abstract: A FinFET device and a method of forming the same are disclosed. In accordance with some embodiments, a FinFET device includes a substrate having at least one fin, a gate stack across the at least one fin, a strained layer aside the gate stack and a silicide layer over the strained layer. The strained layer has a boron surface concentration greater than about 2E20 atom/cm3 within a depth range of about 0-5 nm from a surface of the strained layer.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hsiung Tsai, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
  • Publication number: 20200273963
    Abstract: A semiconductor structure includes a substrate, a semiconductor fin connected to the substrate, an epitaxial layer disposed over the semiconductor fin, and a silicide feature over and in contact with the epitaxial layer. The epitaxial layer including silicon germanium and further includes gallium in an upper portion of the epitaxial layer that is in contact with the silicide feature.
    Type: Application
    Filed: May 11, 2020
    Publication date: August 27, 2020
    Inventors: Shahaji B. More, Chun Hsiung Tsai, Shih-Chieh Chang, Kuo-Feng Yu, Cheng-Yi Peng
  • Patent number: 10749008
    Abstract: A gate structure, a semiconductor device, and the method of forming a semiconductor device are provided. In various embodiments, the gate structure includes a gate stack and a doped spacer overlying a sidewall of the gate stack. The gate stack contains a doped work function metal (WFM) stack and a metal gate electrode overlying the doped WFM stack.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: August 18, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hsiung Tsai, Kuo-Feng Yu, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
  • Patent number: 10749010
    Abstract: Methods for forming semiconductor structures are provided. The method includes forming a fin structure over a substrate and forming a gate structure across the fin structure. The method further includes recessing the fin structure to form a recess and implanting dopants from the recess to form a doped region. The method further includes diffusing the dopants in the doped region to form an expanded doped region and forming a source/drain structure over the expanded doped region.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: August 18, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shahaji B. More, Chun-Hsiung Tsai, Cheng-Yi Peng, Shih-Chieh Chang, Kuo-Feng Yu
  • Patent number: 10741662
    Abstract: Methods and structures for forming devices, such as transistors, are discussed. A method embodiment includes forming a gate spacer along a sidewall of a gate stack on a substrate; passivating at least a portion of an exterior surface of the gate spacer; and epitaxially growing a material in the substrate proximate the gate spacer while the at least the portion of the exterior surface of the gate spacer remains passivated. The passivating can include using at least one of a thermal treatment, a plasma treatment, or a thermal treatment.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: August 11, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Kuo-Feng Yu
  • Patent number: 10741642
    Abstract: Embodiments of mechanisms for forming dislocations in source and drain regions of finFET devices are provided. The mechanisms involve recessing fins and removing the dielectric material in the isolation structures neighboring fins to increase epitaxial regions for dislocation formation. The mechanisms also involve performing a pre-amorphous implantation (PAI) process either before or after the epitaxial growth in the recessed source and drain regions. An anneal process after the PAI process enables consistent growth of the dislocations in the source and drain regions. The dislocations in the source and drain regions (or stressor regions) can form consistently to produce targeted strain in the source and drain regions to improve carrier mobility and device performance for NMOS devices.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: August 11, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Wei-Yuan Lu, Chien-Tai Chan, Wei-Yang Lee, Da-Wen Lin
  • Publication number: 20200251571
    Abstract: The present disclosure relates to a semiconductor device including a substrate having a top surface and a gate stack. The gate stack includes a gate dielectric layer on the substrate and a gate electrode on the gate dielectric layer. The semiconductor device also includes a multi-spacer structure. The multi-spacer includes a first spacer formed on a sidewall of the gate stack, a second spacer, and a third spacer. The second spacer includes a first portion formed on a sidewall of the first spacer and a second portion formed on the top surface of the substrate. The second portion of the second spacer has a thickness in a first direction that gradually decreases. The third spacer is formed on the second portion of the second spacer and on the top surface of the substrate. The semiconductor device further includes a source/drain region formed in the substrate, and a portion of the third spacer abuts the source/drain region and the second portion of the second spacer.
    Type: Application
    Filed: November 20, 2019
    Publication date: August 6, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun Hsiung TSAI, Clement Hsingjen WANN, Kuo-Feng YU, Ming-Hsi YEH, Shahaji B. MORE, Yu-Ming LIN
  • Patent number: 10734411
    Abstract: A method of fabricating a semiconductor structure having multiple semiconductor device layers is provided. The method comprises providing a bulk substrate and growing a first channel material on the bulk substrate wherein the lattice constant of the first channel material is different from the lattice constant of the bulk substrate to introduce strain to the first channel material. The method further comprises fabricating a first semiconductor device layer on the bulk substrate with the strained first channel material, fabricating a buffer layer comprising dielectric material with a blanket top surface above the first semiconductor layer, bonding to the blanket top surface a bottom surface of a second substrate comprising a buried oxide with a second channel material above the buried oxide, and fabricating a second semiconductor device layer on the second substrate.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: August 4, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yi-Tang Lin, Chun-Hsiung Tsai, Clement Hsingjen Wann
  • Patent number: 10720529
    Abstract: A method includes forming a first channel region and a first gate structure formed over the first channel region. A first source/drain region is formed adjacent the first channel region and the first source/drain region includes a crystalline structure doped with a first dopant. A first silicide is formed over the first source/drain region. The first source/drain region includes a first concentration of the first dopant between 2.0×1021 atoms per centimeter cubed and 4.0×1021 atoms per centimeter cubed at a depth of 8 to 10 nanometers.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: July 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Patent number: 10686074
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a fin structure extended above a substrate and a gate structure formed over a middle portion of the fin structure. The middle portion of the fin structure is wrapped by the gate structure. The FinFET device structure includes a source/drain (S/D) structure adjacent to the gate structure, and the S/D structure includes a doped region at an outer portion of the S/D structure, and the doped region includes gallium (Ga). The FinFET device structure includes a metal silicide layer formed over the doped region of the S/D structure, and the metal silicide layer is in direct contact with the doped region of the S/D structure.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: June 16, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Hsiung Tsai, Shahaji B. More, Cheng-Yi Peng, Yu-Ming Lin, Kuo-Feng Yu, Ziwei Fang
  • Patent number: 10665717
    Abstract: A FinFET device and a method of forming the same are disclosed. In accordance with some embodiments, a FinFET device includes a substrate having at least one fin, a gate stack across the at least one fin, a strained layer aside the gate stack and a silicide layer over the strained layer. The strained layer has a boron surface concentration greater than about 2E20 atom/cm3 within a depth range of about 0-5 nm from a surface of the strained layer.
    Type: Grant
    Filed: August 26, 2018
    Date of Patent: May 26, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun Hsiung Tsai, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang