Patents by Inventor Chun Hu Chen

Chun Hu Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125003
    Abstract: A method of growing a single crystal ingot includes growing a single crystal silicon ingot from a silicon melt in a crucible within an inner chamber, adding a volatile dopant into a feed tube, positioning the feed tube within an inner chamber at a first height relative to a surface of the melt, adjusting the feed tube within the inner chamber to a second height at a speed rate, and heating the volatile dopant to form a gaseous dopant as the feed tube is moved from the first height to the second height at the speed rate. Each of the second height and the speed rate are selected to control a vaporization rate of the volatile dopant. The method also includes introducing dopant species into the melt while growing the ingot by contacting the surface of the melt with the gaseous dopant.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 18, 2024
    Inventors: Chieh HU, Hsien-Ta TSENG, Chun-Sheng WU, William Lynn LUTER, Liang-Chin CHEN, Sumeet BHAGAVAT, Carissima Marie HUDSON, Yu-Chiao Wu
  • Publication number: 20240125004
    Abstract: A method of growing a single crystal ingot includes growing a single crystal silicon ingot from a silicon melt in a crucible within an inner chamber, adding a volatile dopant into a feed tube, positioning the feed tube within an inner chamber at a first height relative to a surface of the melt, adjusting the feed tube within the inner chamber to a second height at a speed rate, and heating the volatile dopant to form a gaseous dopant as the feed tube is moved from the first height to the second height at the speed rate. Each of the second height and the speed rate are selected to control a vaporization rate of the volatile dopant. The method also includes introducing dopant species into the melt while growing the ingot by contacting the surface of the melt with the gaseous dopant.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 18, 2024
    Inventors: Chieh HU, Hsien-Ta TSENG, Chun-Sheng WU, William Lynn LUTER, Liang-Chin CHEN, Sumeet BHAGAVAT, Carissima Marie HUDSON, Yu-Chiao Wu
  • Patent number: 11939603
    Abstract: A modified cutinase is disclosed. The cutinase has the modified amino acid sequence of SEQ ID NO: 2, wherein the modification is a substitution of asparagine at position 181 with alanine, or substitutions of asparagine at position 181 with alanine and phenylalanine at position 235 with leucine. The modified enzyme has improved PET-hydrolytic activity, and thus, the high-activity PET hydrolase is obtained, and the industrial application value of the PET hydrolase is enhanced.
    Type: Grant
    Filed: June 21, 2023
    Date of Patent: March 26, 2024
    Assignee: HUBEI UNIVERSITY
    Inventors: Chun-Chi Chen, Jian-Wen Huang, Jian Min, Xian Li, Beilei Shi, Panpan Shen, Yu Yang, Yumei Hu, Longhai Dai, Lilan Zhang, Yunyun Yang, Rey-Ting Guo
  • Publication number: 20220145467
    Abstract: A method for manufacturing an amorphous multielement metal oxide hydroxide film includes: A liquid mixture is formed by dissolving an oxidizing agent selected from a group consisting of potassium permanganate, potassium chromate, potassium dichromate and potassium ferrate, and a reducing agent in a solvent. The oxidizing agent forms an oxometallate anion having a first metal atom with a first valence number. The reducing agent forms a metal cation having a second metal atom with a third valence number. An amorphous multielement metal oxide hydroxide film is deposited on a substrate by soaking the substrate in the liquid mixture. The amorphous multielement metal oxide hydroxide film includes a multielement metal oxide hydroxide having the first metal atom with a second valence smaller than the first valence number and the second metal atom with a fourth valence number larger than the third valence number.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Inventors: Chun-Hu Chen, Ren-Huai Jhang, Chang-Ying Yang
  • Publication number: 20200199756
    Abstract: A method for depositing a metal oxide film in a liquid environment is provided, and includes steps of: dissolving an oxidizing agent in solvent with hydrogen bond to form a solution, and placing a substrate into the solution for performing a deposition reaction to deposit a metal oxide hydroxide film on the substrate. The oxidizing agent is potassium permanganate, potassium chromate, or potassium dichromate, a reaction temperature of the deposition reaction ranges from 1 to 99 degrees Celsius, and a reaction pressure environment of the deposition reaction is an atmospheric pressure environment.
    Type: Application
    Filed: May 10, 2019
    Publication date: June 25, 2020
    Inventors: Chun-Hu CHEN, Ren-Huai JHANG, Chang-Ying YANG
  • Patent number: 9450242
    Abstract: A method for manufacturing a nanostructured metal oxide calcinate suitable for biosensor through a procedure of redox reaction is disclosed in this invention. The nanostructured metal oxide calcinate is free of impurities and produced with better electrocatalytic activity and better conductivity. Thus, an electrode of biosensor can be modified via the nanostructured metal oxide calcinate. The method for manufacturing the nanostructured metal oxide calcinate includes: disposing a first metal material and a second metal material into a reaction slot and making the first metal material and the second metal material dissolved within a solvent to form a mixture, wherein the pH value of the mixture ranges between 0 to 7, the mixture performs a redox reaction process for obtaining a metal oxide material; and eventually calcining the metal oxide material for obtaining a nanostructured metal oxide calcinate.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: September 20, 2016
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Chun-Hu Chen, Cheng-Chi Kuo, Wen-Jie Lan
  • Patent number: 9431258
    Abstract: A method for photodepositing a particle on a graphene-semiconductor hybrid panel is disclosed. The method for photodepositing the particle on the graphene-semiconductor includes providing a graphene-semiconductor hybrid panel, dipping the graphene-semiconductor hybrid panel in a fluid containing a precursor, and irradiating the graphene-semiconductor hybrid panel using a light source until the precursor has been reduced or oxidized to form a particle photodeposited on a surface of a graphene sheet. The graphene-semiconductor hybrid panel includes a semiconductor substrate and the graphene sheet adhered to the semiconductor substrate. The light source has an energy equal to or higher than a band gap of the semiconductor substrate. As such, the particle can be directly deposited on the surface of the graphene sheet without the need of modifying the graphene.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 30, 2016
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Chun-Hu Chen, Cheng-Chi Kuo
  • Publication number: 20160233093
    Abstract: A method for photodepositing a particle on a graphene-semiconductor hybrid panel is disclosed. The method for photodepositing the particle on the graphene-semiconductor includes providing a graphene-semiconductor hybrid panel, dipping the graphene-semiconductor hybrid panel in a fluid containing a precursor, and irradiating the graphene-semiconductor hybrid panel using a light source until the precursor has been reduced or oxidized to form a particle photodeposited on a surface of a graphene sheet. The graphene-semiconductor hybrid panel includes a semiconductor substrate and the graphene sheet adhered to the semiconductor substrate. The light source has an energy equal to or higher than a band gap of the semiconductor substrate. As such, the particle can be directly deposited on the surface of the graphene sheet without the need of modifying the graphene.
    Type: Application
    Filed: March 24, 2015
    Publication date: August 11, 2016
    Inventors: Chun-Hu CHEN, Cheng-Chi KUO
  • Publication number: 20150048280
    Abstract: A method for manufacturing a nanostructured metal oxide calcinate suitable for biosensor through a procedure of redox reaction is disclosed in this invention. The nanostructured metal oxide calcinate is free of impurities and produced with better electrocatalytic activity and better conductivity. Thus, an electrode of biosensor can be modified via the nanostructured metal oxide calcinate. The method for manufacturing the nanostructured metal oxide calcinate includes: disposing a first metal material and a second metal material into a reaction slot and making the first metal material and the second metal material dissolved within a solvent to form a mixture, wherein the pH value of the mixture ranges between 0 to 7, the mixture performs a redox reaction process for obtaining a metal oxide material; and eventually calcining the metal oxide material for obtaining a nanostructured metal oxide calcinate.
    Type: Application
    Filed: December 11, 2013
    Publication date: February 19, 2015
    Applicant: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Chun-Hu Chen, Cheng-Chi Kuo, Wen-Jie Lan
  • Patent number: 8877119
    Abstract: Nanocomposites of multi-phase metal oxide ceramics have been produced from water soluble salts of the resulting metal oxides by a foaming esterification sol-gel method. The evolution of volatile gases at elevated temperature during the esterification reaction causes the formation of a foam product. Nanocomposites of multi-phase metal oxide ceramics have also been produced by a cation polymer precursor method. In this second method, the metal cations are chelated by the polymer and the resulting product is gelled and foamed. Calcination of the resulting foams gives nanocomposite powders with extremely fine, uniform grains and phase domains. These microstructures are remarkably stable both under post-calcination heat treatment and during consolidation by hot-pressing.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: November 4, 2014
    Assignee: University of Connecticut Center for Science and Technology and Commercialization
    Inventors: Eric H. Jordan, Steven L. Suib, Aparna Iyer, Jacquelynn Garofano, Chun-Hu Chen
  • Patent number: 8556786
    Abstract: A thigh exerciser includes a U-shaped frame having a space formed between two levers, a retaining member coupled between the levers for connecting and retaining the levers of the frame together, and a spring biasing member having two arms engaged with the levers and secured to the levers respectively for securing the spring biasing member to the levers of the frame. The frame includes a projection extended from each of the levers for engaging with the arms and for securing the arms of the spring biasing member to the levers of the frame. The spring biasing member includes a channel formed in each of the arms for slidably and adjustably engaging with the projection of the lever.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: October 15, 2013
    Inventor: Chun Hu Chen
  • Publication number: 20120322645
    Abstract: Nanocomposites of multi-phase metal oxide ceramics have been produced from water soluble salts of the resulting metal oxides by a foaming esterification sol-gel method. The evolution of volatile gases at elevated temperature during the esterification reaction causes the formation of a foam product. Nanocomposites of multi-phase metal oxide ceramics have also been produced by a cation polymer precursor method. In this second method, the metal cations are chelated by the polymer and the resulting product is gelled and foamed. Calcination of the resulting foams gives nanocomposite powders with extremely fine, uniform grains and phase domains. These microstructures are remarkably stable both under post-calcination heat treatment and during consolidation by hot-pressing.
    Type: Application
    Filed: December 16, 2011
    Publication date: December 20, 2012
    Inventors: Eric H. Jordan, Steven L. Suib, Aparna Iyer, Jacquelynn Garofano, Chun-Hu Chen
  • Publication number: 20120178600
    Abstract: A thigh exerciser includes a U-shaped frame having a space formed between two levers, a retaining member coupled between the levers for connecting and retaining the levers of the frame together, and a spring biasing member having two arms engaged with the levers and secured to the levers respectively for securing the spring biasing member to the levers of the frame. The frame includes a projection extended from each of the levers for engaging with the arms and for securing the arms of the spring biasing member to the levers of the frame. The spring biasing member includes a channel formed in each of the arms for slidably and adjustably engaging with the projection of the lever.
    Type: Application
    Filed: May 11, 2011
    Publication date: July 12, 2012
    Inventor: Chun Hu Chen