Patents by Inventor Chun-Lin Chiang

Chun-Lin Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120402
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a first dielectric feature extending along a first direction, the first dielectric feature comprising a first dielectric layer having a first sidewall and a second sidewall opposing the first sidewall, a first semiconductor layer disposed adjacent the first sidewall, the first semiconductor layer extending along a second direction perpendicular to the first direction, a second dielectric feature extending along the first direction, the second dielectric feature disposed adjacent the first semiconductor layer, and a first gate electrode layer surrounding at least three surfaces of the first semiconductor layer, and a portion of the first gate electrode layer is exposed to a first air gap.
    Type: Application
    Filed: November 19, 2023
    Publication date: April 11, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jia-Ni YU, Kuo-Cheng CHIANG, Mao-Lin HUANG, Lung-Kun CHU, Chung-Wei HSU, Chun-Fu LU, Chih-Hao WANG, Kuan-Lun CHENG
  • Publication number: 20240113195
    Abstract: Semiconductor structures and methods for forming the same are provided. The semiconductor structure includes a plurality of first nanostructures formed over a substrate, and a dielectric wall adjacent to the first nanostructures. The semiconductor structure also includes a first liner layer between the first nanostructures and the dielectric wall, and the first liner layer is in direct contact with the dielectric wall. The semiconductor structure also includes a gate structure surrounding the first nanostructures, and the first liner layer is in direct contact with a portion of the gate structure.
    Type: Application
    Filed: February 22, 2023
    Publication date: April 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jia-Ni YU, Lung-Kun CHU, Chun-Fu LU, Chung-Wei HSU, Mao-Lin HUANG, Kuo-Cheng CHIANG, Chih-Hao WANG
  • Publication number: 20240096994
    Abstract: A method for forming a semiconductor device is provided. The method includes forming a plurality of first channel nanostructures and a plurality of second channel nanostructures in an n-type device region and a p-type device region of a substrate, respectively, and sequentially depositing a gate dielectric layer, an n-type work function metal layer, and a cap layer surrounding each of the first and second channel nanostructures. The cap layer merges in first spaces between adjacent first channel nanostructures and merges in second spaces between adjacent second channel nanostructures. The method further includes selectively removing the cap layer and the n-type work function metal layer in the p-type device region, and depositing a p-type work function metal layer over the cap layer in the n-type device region and the gate dielectric layer in the p-type device region. The p-type work function metal layer merges in the second spaces.
    Type: Application
    Filed: February 10, 2023
    Publication date: March 21, 2024
    Inventors: Lung-Kun CHU, Jia-Ni YU, Chun-Fu LU, Mao-Lin HUANG, Kuo-Cheng CHIANG, Chih-Hao WANG
  • Patent number: 9842722
    Abstract: An electronic microscope includes a carrier, a first driving unit, a flow-buffer unit and an electron source. The carrier carries a sample. The first driving unit drives a first fluid to flow along a first flow path, wherein the first flow path passes through the sample. The flow-buffer unit is disposed on the first flow path to perform buffering on the first fluid, wherein the first fluid flows through the flow-buffer unit and the carrier in sequence. The electron source provides an electron beam to the sample.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: December 12, 2017
    Assignee: Industrial Technology Research Institute
    Inventors: Hsin-Hung Lee, Cheng-Yu Lee, Chun-Lin Chiang, Kun-Chih Tsai, Win-Ti Lin
  • Publication number: 20160172152
    Abstract: An electronic microscope includes a carrier, a first driving unit, a flow-buffer unit and an electron source. The carrier carries a sample. The first driving unit drives a first fluid to flow along a first flow path, wherein the first flow path passes through the sample. The flow-buffer unit is disposed on the first flow path to perform buffering on the first fluid, wherein the first fluid flows through the flow-buffer unit and the carrier in sequence. The electron source provides an electron beam to the sample.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 16, 2016
    Inventors: Hsin-Hung Lee, Cheng-Yu Lee, Chun-Lin Chiang, Kun-Chih Tsai, Win-Ti Lin
  • Patent number: 8189183
    Abstract: An optical inspection apparatus capable of adjusting an incident angle of a detected light beam and adjusting a detecting angle for detecting the detected light beam. A driving mechanism is used to actuate two arms having a light source and a detector disposed thereon respectively to conduct a relative movement between the two arms so as to control the incident angle and the detecting angle. By means of the embodiments, mechanism for adjusting the angle is simplified so that the apparatus is capable of being adapted to combine with the application of micro sensors such that practicality of modularization design and microminiaturization and convenience of operation are capable of being greatly improved and that the cost can be reduced.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: May 29, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Hsueh-Ching Shih, Jia-Huey Tsao, Chih-Cheng Feng, Chun-Lin Chiang, Chun-Min Su, Kuo-Chi Chiu
  • Publication number: 20100253947
    Abstract: An optical inspection apparatus capable of adjusting an incident angle of a detected light beam and adjusting a detecting angle for detecting the detected light beam. A driving mechanism is used to actuate two arms having a light source and a detector disposed thereon respectively to conduct a relative movement between the two arms so as to control the incident angle and the detecting angle. By means of the embodiments, mechanism for adjusting the angle is simplified so that the apparatus is capable of being adapted to combine with the application of micro sensors such that practicality of modularization design and microminiaturization and convenience of operation are capable of being greatly improved and that the cost can be reduced.
    Type: Application
    Filed: October 16, 2009
    Publication date: October 7, 2010
    Applicant: Industrial Technology Research Institute
    Inventors: HSUEH-CHING SHIH, JIA-HUEY TSAO, CHIH-CHENG FENG, CHUN-LIN CHIANG, CHUN-MIN SU, KUO-CHI CHU