Patents by Inventor Chun-Lung HUANG

Chun-Lung HUANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210047810
    Abstract: A portable drinking water generator includes a micro gas pump, a micro condenser module, and a micro liquid pump. The portable drinking water generator utilizes the micro gas pump to draw air and transmit the purified air to the micro condenser module. The water in the air is condensed into liquid water by the micro condenser module. Afterwards, the liquid water is collected and transported to a water purification module by the micro liquid pump. The liquid water is filtered by the water purification module and becomes drinkable drinking water. Therefore, the portable drinking water generator can achieve generating drinking water.
    Type: Application
    Filed: July 20, 2020
    Publication date: February 18, 2021
    Inventors: Hao-Jan Mou, Ching-Sung Lin, Yung-Lung Han, Chi-Feng Huang, Chun-Yi Kuo, Chang-Yen Tsai, Wei-Ming Lee
  • Publication number: 20210048012
    Abstract: A micro pump includes a base plate, a valve membrane, an upper covering plate and a pump core module. The valve membrane is disposed in a valve membrane accommodation slot of the base plate, seals a fluid channel of the base plate and includes a valve aperture where a protruding portion of the base plate extended through. The upper covering plate is accommodated in an upper covering plate accommodation slot of the base plate and includes a fluid relief aperture sealed by the valve membrane, a fluid converging groove and a fluid converging channel between the fluid converging groove and a fluid-outlet channel of the base plate. The pump core module is accommodated within a pump accommodation slot of the base plate. By actuating the pump core module, the fluid passes through the fluid channel, the valve aperture, the fluid converging groove, and is discharged out through the fluid-outlet channel.
    Type: Application
    Filed: July 2, 2020
    Publication date: February 18, 2021
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Shih-Chang Chen, Jia-Yu Liao, Hung-Hsin Liao, Chung-Wei Kao, Yung-Lung Han, Chi-Feng Huang, Chun-Yi Kuo
  • Patent number: 10916694
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first ultra low-k (ULK) dielectric layer on the first MTJ; performing a first etching process to remove part of the first ULK dielectric layer and forming a damaged layer on the first ULK dielectric layer; and forming a second ULK dielectric layer on the damaged layer.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: February 9, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Yu-Tsung Lai, Wei-Hao Huang
  • Patent number: 10891847
    Abstract: Examples herein disclose an apparatus. The apparatus includes a network interface controller (NIC) port to be dedicated to a management functionality of a server. The apparatus also includes a light emitting diode (LED), coupled to the NIC port, to provide a visible indication that the NIC port is dedicated to the management functionality of the server.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: January 12, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Min-Lung Ke, Peter Liao, Chun-Hua Huang, Chih-Chieh Wang, Yi-Hsun Chen
  • Patent number: 10854708
    Abstract: A capacitor includes a first graphene structure having a first plurality of graphene layers. The capacitor further includes a dielectric layer over the first graphene structure. The capacitor further includes a second graphene structure over the dielectric layer, wherein the second graphene structure has a second plurality of graphene layers.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: December 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chewn-Pu Jou, Chih-Hsin Ko, Po-Wen Chiu, Chao-Ching Cheng, Chun-Chieh Lu, Chi-Feng Huang, Huan-Neng Chen, Fu-Lung Hsueh, Clement Hsingjen Wann
  • Patent number: 10854520
    Abstract: The present invention provides a method for forming a semiconductor structure. The method including: Firstly, a substrate is provided, a first region and a second region are defined thereon, next, a gate dielectric layer and a work function metal layer are sequentially formed on the substrate within the first region and within the second region. Afterwards, a dielectric layer is formed on the work function metal layer within the second region, a hydrogen gas treatment is then performed on the substrate, and the work function metal layer is removed within the first region.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: December 1, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Chun-Hsien Lin, Wei-Hao Huang, Kai-Teng Cheng
  • Patent number: 10844245
    Abstract: Moving an article after a material, such as a hot-melt adhesive, has been applied to a surface of the article is accomplished with an article transfer apparatus. The apparatus is comprised of a belt having a plurality of apertures extending there through that are effective to communicate a vacuum pressure from an inner surface of the belt to a contacting surface of the belt. The vacuum pressure secures and adheres the article to the contacting surface of the belt as the belt conveys the article. The vacuum pressure is distributed along the inner surface of the belt by a vacuum chamber, which is between a compression roller and a second roller.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: November 24, 2020
    Assignee: NIKE, Inc.
    Inventors: Chia-Hung Hsieh, Chun-Ta Huang, Chiung-Lung Lin
  • Patent number: 10823165
    Abstract: A gas transportation device includes a casing, a nozzle plate, a chamber frame, an actuator, an insulating frame and a conducting frame, which are stacked sequentially. A resonance chamber is defined by the actuator, the chamber frame and the suspension plate collaboratively. When the actuator is enabled, the nozzle plate is subjected to resonance and the suspension plate of the nozzle plate vibrates in the reciprocating manner. Consequently, the gas is transferred to a gas-guiding chamber through the at least one vacant space and discharged from the discharging opening and the gas is circulated.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: November 3, 2020
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Chun-Lung Tseng, Che-Wei Huang, Chien-Tang Wen, Shih-Chang Chen, Yung-Lung Han, Chi-Feng Huang
  • Patent number: 10820696
    Abstract: A drawer part assembly includes first and second walls and a mounting fitting. The first wall includes a longitudinal section and a transverse section transversely connected to the longitudinal section. These two sections define a recess. The mounting fitting is attached to the first wall and includes first and second mounting portions, which are perpendicularly connected. The second mounting portion divides the first mounting portion into first and second portions. The second mounting portion is mounted in the recess. The longitudinal section of the first wall is allowed to press against the second portion of the first mounting portion. The second wall has an end portion mounted between the first portion and the second mounting portion of the mounting fitting.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: November 3, 2020
    Assignees: King Slide Works Co., Ltd., King Slide Technology Co., Ltd.
    Inventors: Ken-Ching Chen, Fang-Cheng Su, Shih-Lung Huang, Ci-Bin Huang, Chun-Chiang Wang
  • Publication number: 20200343279
    Abstract: A method for forming a high dielectric constant (high-?) dielectric layer on a substrate including performing a pre-clean process on a surface of the substrate. A chloride precursor is introduced on the surface. An oxidant is introduced to the surface to form the high-? dielectric layer on the substrate. A chlorine concentration of the high-? dielectric layer is lower than about 8 atoms/cm3.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Inventors: Tsung-Han Tsai, Horng-Huei Tseng, Chun-Hao Chou, Kuo-Cheng Lee, Yung-Lung Hsu, Yun-Wei Cheng, Hsin-Chieh Huang
  • Patent number: 10809586
    Abstract: A mirror display module including a first substrate, pixel units, a second substrate, a display medium layer, a reflection pattern, a third substrate, an electrochromic material layer, a first transparent electrode, and a second transparent electrode is provided. The pixel units are disposed on the first substrate. The second substrate is disposed opposite to the first substrate. The display medium layer is located between the first substrate and the second substrate. The reflection pattern is located between the second substrate and the display medium layer. The reflection pattern has a plurality of openings, and the plurality of openings is overlapped with at least a portion of the plurality of pixel units. The second substrate is located between the third substrate and the first substrate. The electrochromic material layer is located between the third substrate and the second substrate. The first transparent electrode is located between the third substrate and the electrochromic material layer.
    Type: Grant
    Filed: December 23, 2018
    Date of Patent: October 20, 2020
    Assignee: Au Optronics Corporation
    Inventors: Jen-Hao Shih, Chun-Lung Huang, Liang-Yin Huang
  • Patent number: 10801488
    Abstract: A gas transportation device includes a casing, a nozzle plate, a chamber frame, an actuator, an insulating frame and a conducting frame, which are stacked sequentially. A cuboidal resonance chamber is defined by the actuator, the chamber frame and a suspension plate of the nozzle plate collaboratively. When the actuator is driven, the nozzle plate is subjected to a resonance and the suspension plate of the nozzle plate vibrates in the reciprocating manner. Consequently, the gas is transported to a gas-guiding chamber through at least one interspace and discharged from the discharging opening so as to implement the gas circulation.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: October 13, 2020
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Chun-Lung Tseng, Che-Wei Huang, Chien-Tang Wen, Shih-Chang Chen, Yung-Lung Han, Chi-Feng Huang
  • Patent number: 10801487
    Abstract: A gas transportation device includes a casing, a nozzle plate, a chamber frame, an actuator, an insulating frame and a conducting frame, which are stacked sequentially. The casing has a conduit protruding outwardly from the casing and aligned with a discharging opening. The conduit has a guiding channel and an outlet. The guiding channel has a cone shape and is tapered from an end proximate to the discharging opening to the other end proximate to the outlet. The actuator, the chamber frame and the suspension plate collaboratively define a resonance chamber. When the actuator is driven, the nozzle plate is subjected to resonance and the suspension plate of the nozzle plate vibrates in a reciprocating manner. Consequently, the gas is transported to a gas-guiding chamber through at least one gap and outputted from the discharging opening.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: October 13, 2020
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Chun-Lung Tseng, Che-Wei Huang, Chien-Tang Wen, Shih-Chang Chen, Yung-Lung Han, Chi-Feng Huang
  • Patent number: 10801485
    Abstract: A gas transportation device includes a casing, a nozzle plate, a chamber frame, an actuator, an insulating frame and a conducting frame, which are stacked sequentially. The nozzle plate includes at least one bracket, a suspension plate and a through hole. The bracket includes a fixing part and a connecting part. A shape of the fixing part matches a shape of the fixing recess. The nozzle plate is accommodated within the accommodation space. A resonance chamber is defined by the actuator, the chamber frame and the suspension plate collaboratively. When the actuator is enabled, the nozzle plate is subjected to resonance and the suspension plate of the nozzle plate vibrates in the reciprocating manner. Consequently, the gas is transported to a gas-guiding chamber through the at least one vacant space and outputted from the discharging opening, thereby achieving the gas transportation and circulation.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: October 13, 2020
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Chun-Lung Tseng, Che-Wei Huang, Chien-Tang Wen, Shih-Chang Chen, Yung-Lung Han, Chi-Feng Huang
  • Publication number: 20200318633
    Abstract: A micro piezoelectric pump module includes a microprocessor, a driving element, and a piezoelectric pump. The driving element is connected to the microprocessor to receive a modulating signal and a control signal and to output a driving signal. The driving signal includes a driving voltage and a driving frequency. The piezoelectric pump is actuated by the driving signal, and the piezoelectric pump is set to be actuated at an actuation frequency and be applied with an actuation voltage value. The microprocessor drives the driving element to output the driving voltage having an initial voltage value at the driving frequency to the piezoelectric pump, and adjusts the driving frequency to the same with the actuation frequency. After the driving frequency is adjusted to reach the actuation frequency, the microprocessor drives the driving element to gradually increase the initial voltage value to reach the actuation voltage value.
    Type: Application
    Filed: March 30, 2020
    Publication date: October 8, 2020
    Inventors: Hao-Jan Mou, Shen-Wen Chen, Shih-Chang Chen, Chi-Feng Huang, Yung-Lung Han, Wei-Ming Lee, Chun-Yi Kuo
  • Patent number: 10791832
    Abstract: A coupling mechanism adapted for a furniture part and a slide rail includes a coupling base and a cushioning structure. The coupling base is detachably mounted on and in direct contact with the slide rail. The cushioning structure is in indirect contact with the slide rail and is configured to compensate for a possible gap between the furniture part and the slide rail.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: October 6, 2020
    Assignees: King Slide Works Co., Ltd., King Slide Technology Co., Ltd.
    Inventors: Ken-Ching Chen, Shih-Lung Huang, Fang-Cheng Su, Ci-Bin Huang, Chun-Chiang Wang
  • Publication number: 20200309111
    Abstract: A micro-electromechanical systems pump includes a first substrate, a first oxide layer, a second substrate, and a piezoelectric element. The first oxide layer is stacked on the first substrate. The second substrate is combined with the first substrate, and the second substrate includes a silicon wafer layer, a second oxide layer, and a silicon material layer. The silicon wafer layer has an actuation portion. The actuation portion is circular and has a maximum stress value and an actuation stress value. The second oxide layer is formed on the silicon wafer layer. The silicon material layer is located at the second oxide layer and is combined with the first oxide layer. The piezoelectric element is stacked on the actuation portion, and has a piezoelectric stress value. The maximum stress value is greater than the actuation stress value, and the actuation stress value is greater than the piezoelectric stress value.
    Type: Application
    Filed: March 20, 2020
    Publication date: October 1, 2020
    Inventors: Hao-Jan Mou, Rong-Ho Yu, Cheng-Ming Chang, Hsien-Chung Tai, Wen-Hsiung Liao, Chi-Feng Huang, Yung-Lung Han, Chun-Yi Kuo
  • Publication number: 20200292438
    Abstract: A particle detecting device is provided. The particle detecting device includes a base, a detecting element, a micro pump and a drive control board. The base includes a detecting channel, a beam channel and a light trapping region. The detecting element includes a microprocessor, a particle sensor and a laser transmitter. The particle sensor is disposed at an orthogonal position where the detecting channel intersects the beam channel. When the micro pump, the particle sensor and the laser transmitter are enabled under the control of the microprocessor, the gas outside the detecting channel is inhaled into the detecting channel. When the gas flows to the orthogonal position where the detecting channel intersects the beam channel, the gas is irradiated by the projecting light source from the laser transmitter, and projecting light spots generated are projected on the particle sensor for detecting the size and the concentration of suspended particles.
    Type: Application
    Filed: March 11, 2020
    Publication date: September 17, 2020
    Applicant: Microjet Technology Co., Ltd.
    Inventors: Hao-Jan Mou, Chin-Chuan Wu, Chih-Kai Chen, Ching-Sung Lin, Chi-Feng Huang, Yung-Lung Han, Chun-Yi Kuo
  • Patent number: 10775276
    Abstract: A portable gas detecting device includes at least one detecting chamber, at least one gas sensor and at least one actuator. The gas sensor is disposed in the detecting chamber and configured for monitoring gas inside the detecting chamber. The actuator is disposed in the detecting chamber and includes a piezoelectric actuator. When an actuating signal is applied to the piezoelectric actuator and the piezoelectric actuator generates a resonance effect, the gas outside the detecting chamber is introduced into the detecting chamber for sampling. The actuator is driven by an instantaneous sampling pulse to control a trace of gas to flow into the detecting chamber for forming a stable airflow environment. In the stable airflow environment, a gas molecule is dissolved in or bonded to a reaction material on a surface of the gas sensor for reacting.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: September 15, 2020
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Shih-Chang Chen, Chiu-Lin Lee, Ching-Sung Lin, Chi-Feng Huang, Yung-Lung Han, Chun-Yi Kuo
  • Patent number: 10762822
    Abstract: A pixel array is implemented in a display device. The display device includes a plurality of data lines and a plurality of scan lines. The pixel array includes a first sub pixel row, a second sub pixel row, and a third sub pixel row. The first sub pixel row includes a first sub pixel, a second sub pixel, and a third sub pixel. The second sub pixel row includes a fourth sub pixel, a fifth sub pixel, and a sixth sub pixel. The third sub pixel row includes a seventh sub pixel, an eighth sub pixel, and a ninth sub pixel. The seventh sub pixel is electrically coupled to a first data line. The first sub pixel, the fourth sub pixel, and the fifth sub pixel are electrically coupled to a second data line. The second sub pixel, the third sub pixel, and the eighth sub pixel are electrically coupled to a third data line. The sixth sub pixel and the ninth sub pixel are electrically coupled to a fourth data line.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 1, 2020
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Chun-Yu Huang, Chung-Lung Li, Fu-Yuan Liou