Patents by Inventor Chunming Niu

Chunming Niu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230147847
    Abstract: A 3D printing method for an impact-resistant gradient complex part containing a hollow ceramic sphere complex, wherein the method includes the following steps: 1) designing the size and shape of the part as well as an internal layered structure; 2) providing a raw material, wherein the raw material contains a high polymer, a curing agent and hollow ceramic spheres; and 3) providing the raw material with a certain thickness according to a design, then, curing the raw material by using a heat source to form a high polymer layer containing the hollow ceramic spheres, and repeatedly printing the high polymer layer according to the design until the high polymer layer reaches the designed thickness to form the impact-resistant gradient complex part.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 11, 2023
    Inventors: ZhiHui Li, ChunMing Niu, MeiPing Li, QiPing He, Jun Li, Fan Jiang, Xin Ji, ZhaoHai Meng, ShunXiang Gong
  • Patent number: 11590697
    Abstract: A composite containing hollow ceramic spheres and a preparation method are provided. The composite includes an impact-resistant gradient complex part containing a hollow ceramic sphere complex, prepared by using a 3D printing method and a hollow ceramic sphere-high polymer complex dielectric material obtained in a blending and fusing way. The obtained composite has the characteristics of relatively low density and high strength. The impact-resistant gradient complex part is a layered complex, the composition and properties of the complex may be regulated in a direction vertical to a layer according to a design, for example, mechanical properties of the complex are transitioned from soft to hard to form gradient change by regulating the change of the composition, and meanwhile, the thickness among layers with different properties is accurately controlled as required.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: February 28, 2023
    Assignees: XI'AN JIAOTONG UNIVERSITY, CCDC DOWNHOLE SERVICE COMPANY
    Inventors: ChunMing Niu, MeiPing Li, QiPing He, Jun Li, Fan Jiang, Zhihui Li, Xin Ji, ZhaoHai Meng, ShunXiang Gong
  • Publication number: 20200276755
    Abstract: A composite containing hollow ceramic spheres and a preparation method are provided. The composite includes an impact-resistant gradient complex part containing a hollow ceramic sphere complex, prepared by using a 3D printing method and a hollow ceramic sphere-high polymer complex dielectric material obtained in a blending and fusing way. The obtained composite has the characteristics of relatively low density and high strength. The impact-resistant gradient complex part is a layered complex, the composition and properties of the complex may be regulated in a direction vertical to a layer according to a design, for example, mechanical properties of the complex are transitioned from soft to hard to form gradient change by regulating the change of the composition, and meanwhile, the thickness among layers with different properties is accurately controlled as required.
    Type: Application
    Filed: November 6, 2019
    Publication date: September 3, 2020
    Inventors: ChunMing Niu, MeiPing Li, QiPing He, Jun Li, Fan Jiang, ZhiHui Li, Xin Ji, ZhaoHai Meng, ShunXiang Gong
  • Patent number: 10279341
    Abstract: Porous and/or curved nanofiber bearing substrate materials are provided having enhanced surface area for a variety of applications including as electrical substrates, semipermeable membranes and barriers, structural lattices for tissue culturing and for composite materials, production of long unbranched nanofibers, and the like. A method of producing nanofibers is disclosed including providing a plurality of microparticles or nanoparticles such as carbon black particles having a catalyst material deposited thereon, and synthesizing a plurality of nanofibers from the catalyst material on the microparticles or nanoparticles. Compositions including carbon black particles having nanowires deposited thereon are further disclosed.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: May 7, 2019
    Assignee: OneD Material LLC
    Inventor: Chunming Niu
  • Patent number: 9934881
    Abstract: The present invention relates to a non-metallic light conductive wire, a composite conductive wire, a special cable, a motor and the like application products made of the conductive wire, and a method of making the composite conductive wire.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: April 3, 2018
    Assignee: XI'AN JIAOTONG UNIVERSITY
    Inventors: Chunming Niu, Chong Xie, Yonghong Cheng
  • Publication number: 20150348668
    Abstract: The invention discloses a non-metallic light weight conductive wire, a composite conductive wire, a special cable, a motor and the like application products made of the conductive wire, and a method of making the composite conductive wire. The invention has the advantages of novel structure and simple operation, and is easy for large scale industrialized production. Application of the conductive wire produced by the invention in fields of motor manufacturing, aerospace and the like helps drastically reduce the weight of wire.
    Type: Application
    Filed: December 15, 2014
    Publication date: December 3, 2015
    Inventors: Chunming NIU, Chong XIE, Yonghong CHENG
  • Publication number: 20150140333
    Abstract: Porous and/or curved nanofiber bearing substrate materials are provided having enhanced surface area for a variety of applications including as electrical substrates, semipermeable membranes and barriers, structural lattices for tissue culturing and for composite materials, production of long unbranched nanofibers, and the like. A method of producing nanofibers is disclosed including providing a plurality of microparticles or nanoparticles such as carbon black particles having a catalyst material deposited thereon, and synthesizing a plurality of nanofibers from the catalyst material on the microparticles or nanoparticles. Compositions including carbon black particles having nanowires deposited thereon are further disclosed.
    Type: Application
    Filed: October 3, 2014
    Publication date: May 21, 2015
    Inventor: Chunming NIU
  • Patent number: 8992799
    Abstract: A polymer composite composed of a polymerized mixture of functionalized carbon nanotubes and monomer which chemically reacts with the functionalized nanotubes. The carbon nanotubes are functionalized by reacting with oxidizing or other chemical media through chemical reactions or physical adsorption. The reacted surface carbons of the nanotubes are further functionalized with chemical moieties that react with the surface carbons and selected monomers. The functionalized nanotubes are first dispersed in an appropriate medium such as water, alcohol or a liquefied monomer and then the mixture is polymerized. The polymerization results in polymer chains of increasing weight bound to the surface carbons of the nanotubes. The composite may consists of some polymer chains imbedded in the composite without attachment to the nanotubes.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: March 31, 2015
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Chunming Niu, Lein Ngaw
  • Patent number: 8980136
    Abstract: A polymer composite composed of a polymerized mixture of functionalized carbon nanotubes and monomer which chemically reacts with the functionalized nanotubes. The carbon nanotubes are functionalized by reacting with oxidizing or other chemical media through chemical reactions or physical adsorption. The reacted surface carbons of the nanotubes are further functionalized with chemical moieties that react with the surface carbons and selected monomers. The functionalized nanotubes are first dispersed in an appropriate medium such as water, alcohol or a liquefied monomer and then the mixture is polymerized. The polymerization results in polymer chains of increasing weight bound to the surface carbons of the nanotubes. The composite may consists of some polymer chains imbedded in the composite without attachment to the nanotubes.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 17, 2015
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Chunming Niu, Lein Ngaw
  • Patent number: 8956637
    Abstract: This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates for use in various medical devices, as well as methods and uses for such substrates and medical devices. In one particular embodiment, methods for enhancing cellular functions on a surface of a medical device implant are disclosed which generally comprise providing a medical device implant comprising a plurality of nanofibers (e.g., nanowires) thereon and exposing the medical device implant to cells such as osteoblasts.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: February 17, 2015
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Lawrence A. Bock, R. Hugh Daniels, Veeral D. Hardev, Chunming Niu, Vijendra Sahi
  • Publication number: 20140162040
    Abstract: Provided are oxidized carbon nanotube structures including aggregates, networks, assemblages, rigid porous structures, electrodes, and mats. Oxidized carbon nanotubes may be formed by conducting gas-phase oxidation on carbon nanotubes. Gas-phase oxidation may be conducted by contacting carbon nanotubes with gas-phase oxidizing agents, such as CO2, O2, steam, N2O, NO, NO2, O3, ClO2, and mixtures thereof. Near critical and supercritical water can also be used as oxidizing agents. Oxidized carbon nanotube structures may include a plurality of oxidized carbon nanotubes along with a supported catalyst, which was used to grow carbon nanotubes prior to oxidation. The supported catalyst may be subjected to gas-phase oxidation and may remain with the oxidized carbon nanotubes in oxidized carbon nanotube structures.
    Type: Application
    Filed: November 8, 2013
    Publication date: June 12, 2014
    Applicant: Hyperion Catalysis International, Inc.
    Inventors: Chunming NIU, David MOY, Asif CHISHTI, Robert HOCH
  • Patent number: 8580436
    Abstract: Methods of oxidizing multiwalled carbon nanotubes are provided. The multiwalled carbon nanotubes are oxidized by contacting the carbon nanotubes with gas-phase oxidizing agents such as CO2, O2, steam, N2O, NO, NO2, O3, and ClO2. Near critical and supercritical water can also be used as oxidizing agents. The multiwalled carbon nanotubes oxidized according to methods of the invention can be used to prepare rigid porous structures which can be utilized to form electrodes for fabrication of improved electrochemical capacitors.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: November 12, 2013
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Chunming Niu, David Moy, Asif Chishti, Robert Hoch
  • Patent number: 8545730
    Abstract: Provided are inks and coatings including carbon nanotubes.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: October 1, 2013
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, Alan B Fischer, Chunming Niu, Lein Ngaw
  • Patent number: 8440369
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: May 14, 2013
    Assignee: Nanosys, Inc.
    Inventors: Chunming Niu, Calvin Y. H. Chow, Stephen A. Empedocles, J. Wallace Parce
  • Patent number: 8357475
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: January 22, 2013
    Assignee: Nanosys, Inc.
    Inventors: Chunming Niu, Calvin Y. H. Chow, Stephen A. Empedocles, J. Wallace Parce
  • Publication number: 20120282540
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Application
    Filed: July 17, 2012
    Publication date: November 8, 2012
    Applicant: NANOSYS, INC.
    Inventors: Chunming Niu, Calvin Y.H. Chow, Stephen A. Empedocles, J. Wallace Parce
  • Publication number: 20120153235
    Abstract: Provided are inks and coatings including carbon nanotubes.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicant: HYPERION CATALYSIS INTERNATIONAL, INC.
    Inventors: Jun MA, Alan B. FISCHER, Chunming NIU, Lein NGAW
  • Patent number: 8083970
    Abstract: The present invention relates to electroconductive inks and methods of making and using the same. The electroconductive inks include carbon fibrils and a liquid vehicle. The electroconductive ink may further include a polymeric binder. The electroconductive filler used is carbon fibrils which may be oxidized. The ink has rheological properties similar to that of commercially available electroconductive inks that use carbon black as their filler. The ink can be screen-printed, slot-coated, sprayed, brushed or dipped onto a wide variety of substrates to form an electroconductive coating.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: December 27, 2011
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, Alan Fischer, Chunming Niu, Lein Ngaw
  • Patent number: 8041171
    Abstract: This invention provides composite materials comprising nanostructures (e.g., nanowires, branched nanowires, nanotetrapods, nanocrystals, and nanoparticles). Methods and compositions for making such nanocomposites are also provided, as are articles comprising such composites. Waveguides and light concentrators comprising nanostructures (not necessarily as part of a nanocomposite) are additional features of the invention.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: October 18, 2011
    Assignee: Nanosys, Inc.
    Inventors: Mihai A. Buretea, Stephen A. Empedocles, Chunming Niu, Erik C. Scher
  • Patent number: 8025960
    Abstract: Porous nanofiber bearing substrate materials are provided having enhanced surface area for a variety of applications including as electrical substrates, semipermeable membranes and barriers, structural lattices for tissue culturing and for composite materials, and the like.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: September 27, 2011
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Chunming Niu