Patents by Inventor Chun-Ming Tang

Chun-Ming Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11962283
    Abstract: Piston mode Lamb wave resonators are disclosed. A piston mode Lamb wave resonator can include a piezoelectric layer, such as an aluminum nitride layer, and an interdigital transducer on the piezoelectric layer. The piston mode Lamb wave resonator has an active region and a border region, in which the border region has a velocity with a lower magnitude than a velocity of the active region. The border region can suppress a transverse mode.
    Type: Grant
    Filed: December 1, 2022
    Date of Patent: April 16, 2024
    Assignee: Skyworks Solutions, Inc.
    Inventors: Jie Zou, Jiansong Liu, Gong Bin Tang, Chih-Ming Lin, Chun Sing Lam
  • Publication number: 20240096285
    Abstract: A display may include an array of pixels. A pixel can include an organic light-emitting diode, up to three thin-film transistors, and up to two capacitors. The pixel can include a drive transistor, an emission transistor, and a select transistor. The select transistor can be used to apply a reference voltage to the gate of the drive transistor during a global reset phase and during a global threshold voltage sampling phase and can also be used to apply a data voltage to the gate of the drive transistor during a data programming phase. The drive transistor can receive a power supply voltage that toggles between a low voltage during the global reset phase and a high voltage during other phases of operation. Configured and operated in this way, the pixel need not include separate dedicated anode reset and initialization transistors.
    Type: Application
    Filed: July 25, 2023
    Publication date: March 21, 2024
    Inventors: Alper Ozgurluk, Andrew Lin, Cheuk Chi Lo, Chun-Ming Tang, Shinya Ono, Chun-Yao Huang
  • Patent number: 11657742
    Abstract: Embodiments disclosed herein provide systems and methods for testing and repairing various aspects of an electronic display. The electronic display includes a reference array and an active array. The electronic display also includes test circuitry used to test individual or any combination of pixels of the electronic display. Switches may be disposed between the pixels and the test circuitry to be to repair the various components of the electronic display.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: May 23, 2023
    Assignee: Apple Inc.
    Inventors: Hasan Akyol, Chung-Lun Edwin Hsu, Baris Cagdaser, John T. Wetherell, Xuebei Yang, Ali Tabatabaei, Patrick Bryce Bennett, Yingkan Lin, Chun-Ming Tang, Xiaofeng Wang, Hopil Bae
  • Patent number: 11309372
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have a steep sidewall, a sidewall with an undercut, or a sidewall surface with a plurality of curves to disrupt continuity of the OLED layers. A control gate that is coupled to a bias voltage and covered by gate dielectric may be used to form an organic thin-film transistor that shuts the leakage current channel between adjacent anodes on the display.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: April 19, 2022
    Assignee: Apple Inc.
    Inventors: Jaein Choi, Andrew Lin, Cheuk Chi Lo, Chun-Yao Huang, Gloria Wong, Hairong Tang, Hitoshi Yamamoto, James E. Pedder, KiBeom Kim, Kwang Ohk Cheon, Lei Yuan, Michael Slootsky, Rui Liu, Steven E. Molesa, Sunggu Kang, Wendi Chang, Chun-Ming Tang, Cheng Chen, Ivan Knez, Enkhamgalan Dorjgotov, Giovanni Carbone, Graham B. Myhre, Jungmin Lee
  • Publication number: 20220101790
    Abstract: Systems and methods may reduce or eliminate image artifacts due to a defective pixel of an electronic display. An electronic display may include pixels that respectively include a self-emissive element, pixel drive circuitry that supplies a pixel drive current to drive the self-emissive element, and signal routing circuitry that reduces or eliminates a visual artifact due to a defective pixel among the pixels. The signal routing circuitry may do this by turning off the self-emissive element, supplying image data from the pixel drive circuitry to a first adjacent pixel, or receiving image data from other pixel drive circuitry from the first adjacent pixel or a second adjacent pixel.
    Type: Application
    Filed: September 10, 2021
    Publication date: March 31, 2022
    Inventors: John T. Wetherell, Cheuk Chi Lo, Chun-Yao Huang, Lingtao Wang, Derek Keith Shaeffer, Henry C. Jen, Hasan Akyol, Xuebei Yang, Chung-Lun Edwin Hsu, Patrick Bryce Bennett, Chun-Ming Tang, Yingkan Lin, Sheng Zhang, Chaohao Wang, Runjie Xu, Shingo Hatanaka
  • Publication number: 20200066815
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have a steep sidewall, a sidewall with an undercut, or a sidewall surface with a plurality of curves to disrupt continuity of the OLED layers. A control gate that is coupled to a bias voltage and covered by gate dielectric may be used to form an organic thin-film transistor that shuts the leakage current channel between adjacent anodes on the display.
    Type: Application
    Filed: April 27, 2018
    Publication date: February 27, 2020
    Inventors: Jaein Choi, Andrew Lin, Cheuk Chi Lo, Chun-Yao Huang, Gloria Wong, Hairong Tang, Hitoshi Yamamoto, James E. Pedder, KiBeom Kim, Kwang Ohk Cheon, Lei Yuan, Michael Slootsky, Rui Liu, Steven E. Molesa, Sunggu Kang, Wendi Chang, Chun-Ming Tang, Cheng Chen, Ivan Knez, Enkhamgalan Dorjgotov, Giovanni Carbone, Graham B. Myhre, Jungmin Lee
  • Patent number: 10417964
    Abstract: A display with an array of pixels may be provided with redundant pixel control circuits. Switching circuitry may be used to couple pixel control circuits to light-emitting diodes for the pixels. The switching circuitry can be configured using control signals from non-volatile memory in decoder circuitry such as thermometer code decoder circuitry. During manufacturing, the display may be inspected for defects. Defective pixel control circuits can be replaced with redundant pixel control circuits so that the display operates satisfactory. The decoder circuitry may supply control signals to the switching circuitry to switch redundant pixel control circuitry into use while bypassing defective pixel control circuits.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: September 17, 2019
    Assignee: Apple Inc.
    Inventors: Cheuk Chi Lo, Chun-Ming Tang, Chun-Yao Huang, Ivan Knez
  • Patent number: 10375338
    Abstract: A hybrid bonded image sensor has a photodiode die with macrocells having at least one photodiode and a bond contact; a supporting circuitry die with multiple supercells, each supercell having at least one macrocell unit having a bond contact coupled to the bond contact of a macrocell of the photodiode die. Each macrocell unit lies within a supercell and has a reset transistor adapted to reset photodiodes of the macrocell of the photodiode die. Each supercell has at least one common source amplifier adapted to receive signal from the bond contact of a selected macrocell unit of the supercell, the common source amplifier coupled to drive a column line through a selectable source follower. In embodiments, the common source amplifiers of several supercells drive the selectable source follower through a distributed differential amplifier.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: August 6, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Zheng Yang, Hiroaki Ebihara, Chun-Ming Tang, Chao-Fang Tsai, Rui Wang, Tiejun Dai
  • Patent number: 10263031
    Abstract: A hybrid-bonded image sensor has a photodiode die with multiple macrocells; each macrocell has at least one photodiode and a coupling region. The coupling regions couple to a coupling region of a macrocell unit of a supporting circuitry die where they feed an input of an amplifier and a feedback capacitor. The feedback capacitor also couples to output of the amplifier, and the amplifier inverts between the input and the output. The method includes resetting a photodiode of the photodiode die; coupling signal from photodiode through the bond point to the supporting circuitry die to a feedback capacitor and to an input of the amplifier, the feedback capacitor also coupled to an inverting output of the amplifier; and amplifying the signal with the amplifier, where a capacitance of the feedback capacitor determines a gain of the amplifier.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: April 16, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Rui Wang, Hiroaki Ebihara, Zheng Yang, Chun-Ming Tang, Chao-Fang Tsai, Tiejun Dai
  • Publication number: 20180220095
    Abstract: A hybrid-bonded image sensor has a photodiode die with multiple macrocells; each macrocell has at least one photodiode and a coupling region. The coupling regions couple to a coupling region of a macrocell unit of a supporting circuitry die where they feed an input of an amplifier and a feedback capacitor. The feedback capacitor also couples to output of the amplifier, and the amplifier inverts between the input and the output. The method includes resetting a photodiode of the photodiode die; coupling signal from photodiode through the bond point to the supporting circuitry die to a feedback capacitor and to an input of the amplifier, the feedback capacitor also coupled to an inverting output of the amplifier; and amplifying the signal with the amplifier, where a capacitance of the feedback capacitor determines a gain of the amplifier.
    Type: Application
    Filed: February 1, 2017
    Publication date: August 2, 2018
    Inventors: Rui WANG, Hiroaki EBIHARA, Zheng YANG, Chun-Ming TANG, Chao-Fang TSAI, Tiejun DAI
  • Publication number: 20180220094
    Abstract: A hybrid bonded image sensor has a photodiode die with macrocells having at least one photodiode and a bond contact; a supporting circuitry die with multiple supercells, each supercell having at least one macrocell unit having a bond contact coupled to the bond contact of a macrocell of the photodiode die. Each macrocell unit lies within a supercell and has a reset transistor adapted to reset photodiodes of the macrocell of the photodiode die. Each supercell has at least one common source amplifier adapted to receive signal from the bond contact of a selected macrocell unit of the supercell, the common source amplifier coupled to drive a column line through a selectable source follower. In embodiments, the common source amplifiers of several supercells drive the selectable source follower through a distributed differential amplifier.
    Type: Application
    Filed: February 1, 2017
    Publication date: August 2, 2018
    Inventors: Zheng YANG, Hiroaki EBIHARA, Chun-Ming TANG, Chao-Fang TSAI, Rui WANG, Tiejun DAI
  • Patent number: 9961292
    Abstract: A pixel circuit includes a photodiode, and a transfer transistor coupled to the photodiode. A floating diffusion is coupled to the transfer transistor coupled to transfer image charge from the photodiode to the floating diffusion. An amplifier circuit includes an input coupled to the floating diffusion, an output coupled to generate an image data signal of the pixel circuit, and a variable bias terminal coupled to receive a variable bias signal. A reset switch is coupled between the output and input of the amplifier circuit to reset the amplifier circuit in response to a reset signal. A variable bias generator circuit is coupled to generate the variable bias signal in response to a reset signal to transition the variable bias signal from a first bias signal value to a second bias signal value in response to a transition of the reset signal from an active state to an inactive state.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: May 1, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Liping Deng, Zheng Yang, Chun-Ming Tang, Tiejun Dai
  • Patent number: 9859312
    Abstract: An image sensor includes a photodiode disposed in a first semiconductor material, and the photodiode is positioned to absorb image light through the backside of the first semiconductor material. A first floating diffusion is disposed proximate to the photodiode and coupled to receive image charge from the photodiode in response to a transfer signal applied to a transfer gate disposed between the photodiode and the first floating diffusion. A second semiconductor material, including a second floating diffusion, is disposed proximate to the frontside of the first semiconductor material. A dielectric material is disposed between the first semiconductor material and the second semiconductor material, and includes a first bonding via extending from the first floating diffusion to the second floating diffusion, a second bonding via disposed laterally proximate to the first bonding via, and a third bonding via disposed laterally proximate to the first bonding via.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: January 2, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Rui Wang, Hiroaki Ebihara, Zheng Yang, Chun-Ming Tang, Chao-Fang Tsai, Tiejun Dai
  • Patent number: 9843753
    Abstract: An imaging system includes an image sensor and a row-period compensator. The image sensor includes an array of photosensitive pixels and electrical circuitry for controlling the array of photosensitive pixels and for reading accumulated electrical charge therefrom. The electrical circuitry is at least partially powered from a positive power rail and a negative power rail. The row-period compensator is for compensating for a change in current drawn by the electrical circuitry during at least part of a row-period of the image sensor, and the row-period compensator is electrically coupled between the positive and negative power rails. A method for compensating for a change in current drawn by electrical circuitry of an image sensor includes controlling a magnitude of compensation current drawn by a row-period compensator, to compensate for a change in current drawn by the electrical circuitry of the image sensor.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: December 12, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Tianjia Sun, Chun-Ming Tang, Jingyi Liu, Xin Hu
  • Publication number: 20170208276
    Abstract: A method of implementing dynamic ground sharing in an image sensor with pipeline architecture starts with a pixel array capturing image data. Pixel array includes pixels to generate pixel data signals, respectively. A readout circuitry acquires the image data from a row in the pixel array. An analog-to-digital conversion (ADC) circuitry included in the readout circuitry samples the image data from the row to obtain sampled input data. When the ADC circuitry is sampling, a ground sharing switch is closed to couple the pixel array and the ADC circuitry to a common ground. When the ADC circuitry is not sampling, the ground sharing switch is open to separate the pixel array and the ADC circuitry from the common ground. The ADC circuitry converts the sampled image data from analog to digital to obtain an ADC output. Other embodiments are described.
    Type: Application
    Filed: January 14, 2016
    Publication date: July 20, 2017
    Inventors: Tianjia Sun, Qingfei Chen, Chun-Ming Tang, Jingyi Liu
  • Patent number: 9712774
    Abstract: A method of implementing dynamic ground sharing in an image sensor with pipeline architecture starts with a pixel array capturing image data. Pixel array includes pixels to generate pixel data signals, respectively. A readout circuitry acquires the image data from a row in the pixel array. An analog-to-digital conversion (ADC) circuitry included in the readout circuitry samples the image data from the row to obtain sampled input data. When the ADC circuitry is sampling, a ground sharing switch is closed to couple the pixel array and the ADC circuitry to a common ground. When the ADC circuitry is not sampling, the ground sharing switch is open to separate the pixel array and the ADC circuitry from the common ground. The ADC circuitry converts the sampled image data from analog to digital to obtain an ADC output. Other embodiments are described.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: July 18, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Tianjia Sun, Qingfei Chen, Chun-Ming Tang, Jingyi Liu
  • Publication number: 20170127003
    Abstract: An imaging system includes an image sensor and a row-period compensator. The image sensor includes an array of photosensitive pixels and electrical circuitry for controlling the array of photosensitive pixels and for reading accumulated electrical charge therefrom. The electrical circuitry is at least partially powered from a positive power rail and a negative power rail. The row-period compensator is for compensating for a change in current drawn by the electrical circuitry during at least part of a row-period of the image sensor, and the row-period compensator is electrically coupled between the positive and negative power rails. A method for compensating for a change in current drawn by electrical circuitry of an image sensor includes controlling a magnitude of compensation current drawn by a row-period compensator, to compensate for a change in current drawn by the electrical circuitry of the image sensor.
    Type: Application
    Filed: November 2, 2015
    Publication date: May 4, 2017
    Inventors: Tianjia Sun, Chun-Ming Tang, Jingyi Liu, Xin Hu