Patents by Inventor Chun-Ting Chiang

Chun-Ting Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250098238
    Abstract: A semiconductor device includes a first fin-shaped structure and a second fin-shaped structure on a substrate, a bump between the first fin-shaped structure and the second fin-shaped structure, a first recess between the first fin-shaped structure and the bump, and a second recess between the second fin-shaped structure and the bump. Preferably, a top surface of the bump includes a curve concave upward, a width of the bump is greater than twice the width of the first fin-shaped structure, and a height of the bump is less than one fourth of the height of the first fin-shaped structure.
    Type: Application
    Filed: October 23, 2023
    Publication date: March 20, 2025
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ting Chiang, Tien-Shan Hsu, Po-Chang Lin, Lung-En Kuo, Hao-Che Feng, Ping-Wei Huang
  • Publication number: 20250089325
    Abstract: A method includes forming a multi-layer stack over a semiconductor substrate, the multi-layer stack comprising a plurality of sacrificial layers that alternate with a plurality of channel layers, forming a dummy gate stack over a top surface and sidewalls of the multi-layer stack, forming first spacers on sidewalls of the dummy gate stack, growing an epitaxial source/drain region that extends through the plurality of sacrificial layers and the plurality of channel layers, forming a metal-semiconductor alloy region on first portions of the epitaxial source/drain region, forming a coating layer on the metal-semiconductor alloy region, wherein during the forming of the metal-semiconductor alloy region and the coating layer, a residual layer is formed on sidewalls of the first spacers, and performing a wet clean process to selectively etch the residual layer from the sidewalls of the first spacers.
    Type: Application
    Filed: September 8, 2023
    Publication date: March 13, 2025
    Inventors: Yao-Wen Hsu, Yun-Ting Chiang, Chun-Cheng Chou
  • Publication number: 20250081632
    Abstract: A solar cell module includes a first substrate, a second substrate, at least one cell unit, a first packaging film, a second packaging film, a first protective layer, a second protective layer, and a plurality of support members. The first substrate and the second substrate are disposed opposite to each other. The cell unit is disposed between the first substrate and the second substrate. The first packaging film is disposed between the cell unit and the first substrate. The second packaging film is disposed between the cell unit and the second substrate. The first protective layer is disposed between the cell unit and the first packaging film. The second protective layer is disposed between the cell unit and the second packaging film. The support members are respectively disposed between the first packaging film and the second packaging film and surround at least two opposite sides of the cell unit.
    Type: Application
    Filed: August 29, 2024
    Publication date: March 6, 2025
    Applicant: Industrial Technology Research Institute
    Inventors: Hsin-Chung Wu, Chun-Wei Su, Tzu-Ting Lin, En-Yu Pan, Yu-Tsung Chiu, Chih-Lung Lin, Teng-Yu Wang, Chiou-Chu Lai, Ying-Jung Chiang
  • Publication number: 20250038106
    Abstract: A bond structure is provided. The bond structure includes a seed layer and a conductive structure. The conductive structure includes a via portion over the seed layer and a plurality of wires protruding from the via portion.
    Type: Application
    Filed: July 28, 2023
    Publication date: January 30, 2025
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Chun-Wei CHIANG, Yung-Sheng LIN, I-Ting LIN, Ping-Hung HSIEH, Chih-Yuan HSU
  • Patent number: 11239082
    Abstract: A method for fabricating semiconductor device includes the steps of first forming a gate dielectric layer on a substrate; forming a gate material layer on the gate dielectric layer, and removing part of the gate material layer and part of the gate dielectric layer to form a gate electrode, in which a top surface of the gate dielectric layer adjacent to two sides of the gate electrode is lower than a top surface of the gate dielectric layer between the gate electrode and the substrate. Next, a first mask layer is formed on the gate dielectric layer and the gate electrode, part of the first mask layer and part of the gate dielectric layer are removed to form a first spacer, a second mask layer is formed on the substrate and the gate electrode, and part of the second mask layer is removed to forma second spacer.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: February 1, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: I-Fan Chang, Yen-Liang Wu, Wen-Tsung Chang, Jui-Ming Yang, Jie-Ning Yang, Chi-Ju Lee, Chun-Ting Chiang, Bo-Yu Su, Chih-Wei Lin, Dien-Yang Lu
  • Patent number: 10468493
    Abstract: The present invention provides a method of manufacturing a gate stack structure. The method comprises providing a substrate. A dielectric layer is then formed on the substrate and a gate trench is formed in the dielectric layer. A bottom barrier layer, a first work function metal layer and a top barrier layer are formed in the gate trench in sequence. Afterwards, a silicon formation layer is formed on the top barrier layer and filling the gate trench. A planarization process is performed, to remove a portion of the silicon formation layer, a portion of the bottom barrier layer, a portion of the first work function metal layer, and a portion of the top barrier layer. Next, the remaining silicon formation layer is removed completely, and a conductive layer is filled in the gate trench.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: November 5, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ting Chiang, Chi-Ju Lee, Chih-Wei Lin, Bo-Yu Su, Yen-Liang Wu, Wen-Tsung Chang, Jui-Ming Yang, I-Fan Chang
  • Publication number: 20190295849
    Abstract: A method for fabricating semiconductor device includes the steps of first forming a gate dielectric layer on a substrate; forming a gate material layer on the gate dielectric layer, and removing part of the gate material layer and part of the gate dielectric layer to form a gate electrode, in which a top surface of the gate dielectric layer adjacent to two sides of the gate electrode is lower than a top surface of the gate dielectric layer between the gate electrode and the substrate. Next, a first mask layer is formed on the gate dielectric layer and the gate electrode, part of the first mask layer and part of the gate dielectric layer are removed to form a first spacer, a second mask layer is formed on the substrate and the gate electrode, and part of the second mask layer is removed to forma second spacer.
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Inventors: I-Fan Chang, Yen-Liang Wu, Wen-Tsung Chang, Jui-Ming Yang, Jie-Ning Yang, Chi-Ju Lee, Chun-Ting Chiang, Bo-Yu Su, Chih-Wei Lin, Dien-Yang Lu
  • Patent number: 10388749
    Abstract: A semiconductor device includes a substrate, a gate structure, a spacer, a mask layer, and at least one void. The gate structure is disposed on the substrate, and the gate structure includes a metal gate electrode. The spacer is disposed on sidewalls of the gate structure, and a topmost surface of the spacer is higher than a topmost surface of the metal gate electrode. The mask layer is disposed on the gate structure. At least one void is disposed in the mask layer and disposed between the metal gate electrode and the spacer.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: August 20, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yen-Liang Wu, Wen-Tsung Chang, Jui-Ming Yang, I-Fan Chang, Chun-Ting Chiang, Chih-Wei Lin, Bo-Yu Su, Chi-Ju Lee
  • Patent number: 10366896
    Abstract: A method for fabricating semiconductor device includes the steps of first forming a gate dielectric layer on a substrate; forming a gate material layer on the gate dielectric layer, and removing part of the gate material layer and part of the gate dielectric layer to form a gate electrode, in which a top surface of the gate dielectric layer adjacent to two sides of the gate electrode is lower than a top surface of the gate dielectric layer between the gate electrode and the substrate. Next, a first mask layer is formed on the gate dielectric layer and the gate electrode, part of the first mask layer and part of the gate dielectric layer are removed to form a first spacer, a second mask layer is formed on the substrate and the gate electrode, and part of the second mask layer is removed to form a second spacer.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: July 30, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: I-Fan Chang, Yen-Liang Wu, Wen-Tsung Chang, Jui-Ming Yang, Jie-Ning Yang, Chi-Ju Lee, Chun-Ting Chiang, Bo-Yu Su, Chih-Wei Lin, Dien-Yang Lu
  • Publication number: 20190109202
    Abstract: The present invention provides a method of manufacturing a gate stack structure. The method comprises providing a substrate. A dielectric layer is then formed on the substrate and a gate trench is formed in the dielectric layer. A bottom barrier layer, a first work function metal layer and a top barrier layer are formed in the gate trench in sequence. Afterwards, a silicon formation layer is formed on the top barrier layer and filling the gate trench. A planarization process is performed, to remove a portion of the silicon formation layer, a portion of the bottom barrier layer, a portion of the first work function metal layer, and a portion of the top barrier layer. Next, the remaining silicon formation layer is removed completely, and a conductive layer is filled in the gate trench.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 11, 2019
    Inventors: Chun-Ting Chiang, Chi-Ju Lee, Chih-Wei Lin, Bo-Yu Su, Yen-Liang Wu, Wen-Tsung Chang, Jui-Ming Yang, I-Fan Chang
  • Publication number: 20190043725
    Abstract: A method for fabricating semiconductor device includes the steps of first forming a gate dielectric layer on a substrate; forming a gate material layer on the gate dielectric layer, and removing part of the gate material layer and part of the gate dielectric layer to form a gate electrode, in which a top surface of the gate dielectric layer adjacent to two sides of the gate electrode is lower than a top surface of the gate dielectric layer between the gate electrode and the substrate. Next, a first mask layer is formed on the gate dielectric layer and the gate electrode, part of the first mask layer and part of the gate dielectric layer are removed to form a first spacer, a second mask layer is formed on the substrate and the gate electrode, and part of the second mask layer is removed to form a second spacer.
    Type: Application
    Filed: August 28, 2017
    Publication date: February 7, 2019
    Inventors: I-Fan Chang, Yen-Liang Wu, Wen-Tsung Chang, Jui-Ming Yang, Jie-Ning Yang, Chi-Ju Lee, Chun-Ting Chiang, Bo-Yu Su, Chih-Wei Lin, Dien-Yang Lu
  • Patent number: 10186594
    Abstract: The present invention provides a method of manufacturing a gate stack structure. The method comprises providing a substrate. A dielectric layer is then formed on the substrate and a gate trench is formed in the dielectric layer. A bottom barrier layer, a first work function metal layer and a top barrier layer are formed in the gate trench in sequence. Afterwards, a silicon formation layer is formed on the top barrier layer and filling the gate trench. A planarization process is performed, to remove a portion of the silicon formation layer, a portion of the bottom barrier layer, a portion of the first work function metal layer, and a portion of the top barrier layer. Next, the remaining silicon formation layer is removed completely, and a conductive layer is filled in the gate trench.
    Type: Grant
    Filed: July 4, 2017
    Date of Patent: January 22, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ting Chiang, Chi-Ju Lee, Chih-Wei Lin, Bo-Yu Su, Yen-Liang Wu, Wen-Tsung Chang, Jui-Ming Yang, I-Fan Chang
  • Publication number: 20190006484
    Abstract: A semiconductor device includes a substrate, a gate structure, a spacer, a mask layer, and at least one void. The gate structure is disposed on the substrate, and the gate structure includes a metal gate electrode. The spacer is disposed on sidewalls of the gate structure, and a topmost surface of the spacer is higher than a topmost surface of the metal gate electrode. The mask layer is disposed on the gate structure. At least one void is disposed in the mask layer and disposed between the metal gate electrode and the spacer.
    Type: Application
    Filed: July 23, 2018
    Publication date: January 3, 2019
    Inventors: Yen-Liang Wu, Wen-Tsung Chang, Jui-Ming Yang, I-Fan Chang, Chun-Ting Chiang, Chih-Wei Lin, Bo-Yu Su, Chi-Ju Lee
  • Patent number: 10170573
    Abstract: A semiconductor device includes a substrate, a metal gate on the substrate, and a first inter-layer dielectric (ILD) layer around the metal gate. A top surface of the metal gate is lower than a top surface of the ILD layer thereby forming a recessed region atop the metal gate. A mask layer is disposed in the recessed region. A void is formed in the mask layer within the recessed region. A second ILD layer is disposed on the mask layer and the first ILD layer. A contact hole extends into the second ILD layer and the mask layer. The contact hole exposes the top surface of the metal gate and communicates with the void. A conductive layer is disposed in the contact hole and the void.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: January 1, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ting Chiang, Jie-Ning Yang, Chi-Ju Lee, Chih-Wei Lin, Bo-Yu Su, Yen-Liang Wu, I-Fan Chang, Jui-Ming Yang, Wen-Tsung Chang
  • Publication number: 20180358448
    Abstract: The present invention provides a method of manufacturing a gate stack structure. The method comprises providing a substrate. A dielectric layer is then formed on the substrate and a gate trench is formed in the dielectric layer. A bottom barrier layer, a first work function metal layer and a top barrier layer are formed in the gate trench in sequence. Afterwards, a silicon formation layer is formed on the top barrier layer and filling the gate trench. A planarization process is performed, to remove a portion of the silicon formation layer, a portion of the bottom barrier layer, a portion of the first work function metal layer, and a portion of the top barrier layer. Next, the remaining silicon formation layer is removed completely, and a conductive layer is filled in the gate trench.
    Type: Application
    Filed: July 4, 2017
    Publication date: December 13, 2018
    Inventors: Chun-Ting Chiang, Chi-Ju Lee, Chih-Wei Lin, Bo-Yu Su, Yen-Liang Wu, Wen-Tsung Chang, Jui-Ming Yang, I-Fan Chang
  • Patent number: 10062764
    Abstract: A semiconductor device includes a substrate, a gate structure, a spacer, a mask layer, and at least one void. The gate structure is disposed on the substrate, and the gate structure includes a metal gate electrode. The spacer is disposed on sidewalls of the gate structure, and a topmost surface of the spacer is higher than a topmost surface of the metal gate electrode. The mask layer is disposed on the gate structure. At least one void is disposed in the mask layer and disposed between the metal gate electrode and the spacer.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: August 28, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yen-Liang Wu, Wen-Tsung Chang, Jui-Ming Yang, I-Fan Chang, Chun-Ting Chiang, Chih-Wei Lin, Bo-Yu Su, Chi-Ju Lee
  • Patent number: 8980151
    Abstract: A method and system for compression molding a dual core of a golf ball is disclosed. The method may include a first cycle in which a top mold plate, a middle mold plate, and a bottom mold plate may be used to compression mold concave shells. During the first cycle, the top mold plate and the bottom mold plate may be held at a first temperature T1 and the middle mold plate may be held at a second temperature T2. During the first cycle, the mold plates may be pressed together with a first pressure P1 for a first time t1. A second cycle may include compression molding the concave shells about a solid core. During the second cycle, the top mold plate and the bottom mold plate may be held at the first temperature T1 and pressed together with a second pressure P2 for a second time t2.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: March 17, 2015
    Assignee: NIKE, Inc.
    Inventors: Chien-Hsin Chou, Chin-Shun Ko, Chun-Ting Chiang, Chen-Tai Liu, Takahisa Ono
  • Publication number: 20130140734
    Abstract: A method and system for compression molding a dual core of a golf ball is disclosed. The method may include a first cycle in which a top mold plate, a middle mold plate, and a bottom mold plate may be used to compression mold concave shells. During the first cycle, the top mold plate and the bottom mold plate may be held at a first temperature T1 and the middle mold plate may be held at a second temperature T2. During the first cycle, the mold plates may be pressed together with a first pressure P1 for a first time t1. A second cycle may include compression molding the concave shells about a solid core. During the second cycle, the top mold plate and the bottom mold plate may be held at the first temperature T1 and pressed together with a second pressure P2 for a second time t2.
    Type: Application
    Filed: December 5, 2011
    Publication date: June 6, 2013
    Applicant: NIKE, INC.
    Inventors: Chien-Hsin Chou, Chin-Shun Ko, Chun-Ting Chiang, Chen-Tai Liu, Takahisa Ono