Patents by Inventor Chun-Wei Yu

Chun-Wei Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978497
    Abstract: Disclosed is a DDR SDRAM signal calibration device capable of adapting to the variation of voltage and/or temperature. The device includes: an enablement signal setting circuit configured to generate data strobe (DQS) enablement setting; a signal gating circuit configured to generate a DQS enablement setting signal and a DQS enablement signal according to the DQS enablement setting and then output a gated DQS signal according to the DQS enablement signal and a DQS signal; and a calibration circuit configured to generate a first delay signal according to the DQS enablement setting signal and generate a second delay signal according to the first delay signal, the calibration circuit further configured to generate a calibration signal according to the first and second delay signals and the DQS signal. The enablement signal setting circuit maintains or adjusts the DQS enablement setting according to the calibration signal.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: May 7, 2024
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Kuo-Wei Chi, Chun-Chi Yu, Chih-Wei Chang, Ger-Chih Chou
  • Publication number: 20240134410
    Abstract: The present disclosure discloses a memory access interface device. A clock generation circuit generates reference signals. A transmitter transmits an output command and address signal to a memory device according to the reference signals. A signal training circuit executes a training process in a training mode that includes steps outlined below. A training signal is generated such that the training signal is transmitted as the output command and address signal. The training signal and the data signal generated by the memory device are compared to generate a comparison result indicating whether the data signal matches the training signal. The comparison result is stored. The clock generation circuit is controlled to modify a phase of at least one of the reference signals to be one of a plurality of under-test phases to execute a new loop of the training process until all the under-test phases are trained.
    Type: Application
    Filed: October 24, 2022
    Publication date: April 25, 2024
    Inventors: FU-CHIN TSAI, GER-CHIH CHOU, CHUN-CHI YU, CHIH-WEI CHANG, MIN-HAN TSAI
  • Publication number: 20240135999
    Abstract: The present disclosure discloses a memory access interface device. A clock generation circuit generates reference clock signals. Each of access signal transmission circuits each includes a duty cycle adjusting circuit, a duty cycle detection circuit, a frequency division circuit and an asynchronous first-in-first-out circuit. The duty cycle adjusting circuit performs duty cycle adjustment on one of the reference clock signals according to a duty cycle detection signal to generate an output clock signal having a duty cycle. The duty cycle detection circuit detects a variation of the duty cycle to generate the duty cycle detection signal. The frequency division circuit divides a frequency of the output clock signal to generate a read clock signal. The asynchronous first-in-first-out circuit receives an access signal from a memory access controller and outputs an output access signal according to the read clock signal to access the memory device accordingly.
    Type: Application
    Filed: October 24, 2022
    Publication date: April 25, 2024
    Inventors: FU-CHIN TSAI, GER-CHIH CHOU, CHUN-CHI YU, CHIH-WEI CHANG
  • Publication number: 20240120402
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a first dielectric feature extending along a first direction, the first dielectric feature comprising a first dielectric layer having a first sidewall and a second sidewall opposing the first sidewall, a first semiconductor layer disposed adjacent the first sidewall, the first semiconductor layer extending along a second direction perpendicular to the first direction, a second dielectric feature extending along the first direction, the second dielectric feature disposed adjacent the first semiconductor layer, and a first gate electrode layer surrounding at least three surfaces of the first semiconductor layer, and a portion of the first gate electrode layer is exposed to a first air gap.
    Type: Application
    Filed: November 19, 2023
    Publication date: April 11, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jia-Ni YU, Kuo-Cheng CHIANG, Mao-Lin HUANG, Lung-Kun CHU, Chung-Wei HSU, Chun-Fu LU, Chih-Hao WANG, Kuan-Lun CHENG
  • Publication number: 20240113195
    Abstract: Semiconductor structures and methods for forming the same are provided. The semiconductor structure includes a plurality of first nanostructures formed over a substrate, and a dielectric wall adjacent to the first nanostructures. The semiconductor structure also includes a first liner layer between the first nanostructures and the dielectric wall, and the first liner layer is in direct contact with the dielectric wall. The semiconductor structure also includes a gate structure surrounding the first nanostructures, and the first liner layer is in direct contact with a portion of the gate structure.
    Type: Application
    Filed: February 22, 2023
    Publication date: April 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jia-Ni YU, Lung-Kun CHU, Chun-Fu LU, Chung-Wei HSU, Mao-Lin HUANG, Kuo-Cheng CHIANG, Chih-Hao WANG
  • Publication number: 20230369460
    Abstract: Provided are a semiconductor structure and a manufacturing method thereof. The manufacturing method of the semiconductor structure includes the following. A gate structure is formed on a substrate. A tilt implanting process is performed to implant group IV elements into the substrate to form a doped region, and the doped region is located on two sides of the gate structure and partially located under the gate structure. A part of the substrate on two sides of the gate structure is removed to form a first recess. A cleaning process is performed on the surface of the first recess. A wet etching process is performed on the first recess to form a second recess. A semiconductor layer is formed in the second recess.
    Type: Application
    Filed: June 9, 2022
    Publication date: November 16, 2023
    Applicant: United Microelectronics Corp.
    Inventors: Kuang-Hsiu Chen, Wei-Chung Sun, Chao Nan Chen, Chun-Wei Yu, Kuan Hsuan Ku, Shao-Wei Wang
  • Publication number: 20230352587
    Abstract: A semiconductor device and a method of forming the same, the semiconductor device includes a substrate, a gate structure and an epitaxial structure. The gate structure is disposed on the substrate, and the epitaxial structure is disposed in the substrate, at one side of the gate structure. The epitaxial structure includes a portion being protruded from a top surface of the substrate, and the portion includes a discontinuous sidewall, with a distance between a turning point of the discontinuous sidewalls and the gate structure being a greatest distance between the epitaxial structure and the gate structure.
    Type: Application
    Filed: July 4, 2023
    Publication date: November 2, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kuang-Hsiu Chen, Sung-Yuan Tsai, Chi-Hsuan Tang, Chun-Wei Yu, Yu-Ren Wang
  • Patent number: 11735661
    Abstract: A semiconductor device and a method of forming the same, the semiconductor device includes a substrate, a gate structure and an epitaxial structure. The gate structure is disposed on the substrate, and the epitaxial structure is disposed in the substrate, at one side of the gate structure. The epitaxial structure includes a portion being protruded from a top surface of the substrate, and the portion includes a discontinuous sidewall, with a distance between a turning point of the discontinuous sidewalls and the gate structure being a greatest distance between the epitaxial structure and the gate structure.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: August 22, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kuang-Hsiu Chen, Sung-Yuan Tsai, Chi-Hsuan Tang, Chun-Wei Yu, Yu-Ren Wang
  • Publication number: 20230131917
    Abstract: This disclosure provides modified T cells possessing both cell killing function and antigen presenting cell function and method of culturing the same. By administration of the modified T cell, cancer cells in a subject may be effectively inhibited0 via cell-mediated immunity.
    Type: Application
    Filed: October 22, 2021
    Publication date: April 27, 2023
    Inventors: JAN-MOU LEE, CHUN-WEI YU, CHIH-HAO FANG, YA-FANG CHENG
  • Publication number: 20210280717
    Abstract: A semiconductor device and a method of forming the same, the semiconductor device includes a substrate, a gate structure and an epitaxial structure. The gate structure is disposed on the substrate, and the epitaxial structure is disposed in the substrate, at one side of the gate structure. The epitaxial structure includes a portion being protruded from a top surface of the substrate, and the portion includes a discontinuous sidewall, with a distance between a turning point of the discontinuous sidewalls and the gate structure being a greatest distance between the epitaxial structure and the gate structure.
    Type: Application
    Filed: May 26, 2021
    Publication date: September 9, 2021
    Inventors: Kuang-Hsiu Chen, Sung-Yuan Tsai, Chi-Hsuan Tang, Chun-Wei Yu, Yu-Ren Wang
  • Publication number: 20210248603
    Abstract: A block chain-based transaction processing method and apparatus are disclosed, in which an intermediate computing device receives and validates a first block record from, and generates and sends a second block record to, a first computing device; receives a third block record generated by a second computing device after validating the second block record from the intermediate computing device; generates and sends a fourth block record to the second computing device after validating the third block record, receives from the first computing device a fifth block record generated by the first computing device after validating the fourth block record from the intermediate computing device; receives from the second computing device a sixth block record generated by the second computing device after validating the fifth block record from the intermediate computing device; and broadcasts the first to sixth block records to other computing devices after validating the fifth and sixth block records.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 12, 2021
    Inventors: Ching Song WU, Chun-Wei YU, Chih Sheng WANG, Yi Hung LIANG, Cheng-Ying WU
  • Patent number: 11049971
    Abstract: A semiconductor device and a method of forming the same, the semiconductor device includes a substrate, a gate structure and an epitaxial structure. The gate structure is disposed on the substrate, and the epitaxial structure is disposed in the substrate, at one side of the gate structure. The epitaxial structure includes a portion being protruded from a top surface of the substrate, and the portion includes a discontinuous sidewall, with a distance between a turning point of the discontinuous sidewalls and the gate structure being a greatest distance between the epitaxial structure and the gate structure.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: June 29, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kuang-Hsiu Chen, Sung-Yuan Tsai, Chi-Hsuan Tang, Chun-Wei Yu, Yu-Ren Wang
  • Patent number: 10796943
    Abstract: A manufacturing method of a semiconductor structure includes the following steps. A patterned mask layer is formed on a semiconductor substrate. An isolation trench is formed in the semiconductor substrate by removing a part of the semiconductor substrate. A liner layer is conformally formed on an inner sidewall of the isolation trench. An implantation process is performed to the liner layer. The implantation process includes a noble gas implantation process. An isolation structure is at least partially formed in the isolation trench after the implantation process. An etching process is performed to remove the patterned mask layer after forming the isolation structure and expose a top surface of the semiconductor substrate. A part of the liner layer formed on the inner sidewall of the isolation trench is removed by the etching process. The implantation process is configured to modify the etch rate of the liner layer in the etching process.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: October 6, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Liang Ye, Chun-Wei Yu, Yu-Ren Wang, Shi-You Liu, Shao-Hua Hsu
  • Publication number: 20200250665
    Abstract: A blockchain-based electronic transaction system free of sales platform comprises a computing device. The blockchain includes a customer endpoint and a vendor endpoint, the customer endpoint and the vendor endpoint corresponding to a customer device and a vendor device, respectively. The computing device comprises a data storage module and a procurement management module. The data storage module stores at least one product sales channel public key and at least one product data. The customer device is connected to the computing device through the blockchain by a product public key of a product sales channel, and acquires the product data from the data storage module. The procurement management module is configured to enable the customer device to establish a product order message with the vendor endpoint, and to broadcast the message in the blockchain. The product order message is encrypted and authenticated by a customer private key.
    Type: Application
    Filed: October 2, 2018
    Publication date: August 6, 2020
    Inventors: Ching Song WU, Chun-Wei YU
  • Patent number: 10700202
    Abstract: A semiconductor device is disclosed. The semiconductor device comprises a substrate, a gate structure disposed on the substrate, a spacer disposed on the substrate and covering a sidewall of the gate structure, an air gap sandwiched between the spacer and the substrate, and a source/drain region disposed in the substrate and having a faceted surface exposed from the substrate, wherein the faceted surface borders the substrate on a boundary between the air gap and the substrate.
    Type: Grant
    Filed: October 28, 2018
    Date of Patent: June 30, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kuang-Hsiu Chen, Sung-Yuan Tsai, Chi-Hsuan Tang, Kai-Hsiang Wang, Chao-Nan Chen, Shi-You Liu, Chun-Wei Yu, Yu-Ren Wang
  • Patent number: 10651174
    Abstract: A method of forming a gate structure on a fin structure includes the steps of providing a fin structure covered by a first silicon oxide layer, a silicon nitride layer, a gate material and a cap material in sequence, wherein the silicon nitride layer contacts the first silicon oxide layer. Later, the cap material is patterned to form a first cap layer and the gate material is patterned to form a first gate electrode by taking the silicon nitride layer as an etching stop layer. Then, the silicon nitride layer not covered by the first gate electrode is removed to expose part of the first silicon oxide layer. Finally, a first dielectric layer is formed to conformally cover the first silicon oxide layer, the first gate electrode and the first cap layer.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: May 12, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Liang Ye, Kuang-Hsiu Chen, Chun-Wei Yu, Chueh-Yang Liu, Yu-Ren Wang
  • Publication number: 20200144102
    Abstract: A manufacturing method of a semiconductor structure includes the following steps. A patterned mask layer is formed on a semiconductor substrate. An isolation trench is formed in the semiconductor substrate by removing a part of the semiconductor substrate. A liner layer is conformally formed on an inner sidewall of the isolation trench. An implantation process is performed to the liner layer. The implantation process includes a noble gas implantation process. An isolation structure is at least partially formed in the isolation trench after the implantation process. An etching process is performed to remove the patterned mask layer after forming the isolation structure and expose a top surface of the semiconductor substrate. A part of the liner layer formed on the inner sidewall of the isolation trench is removed by the etching process. The implantation process is configured to modify the etch rate of the liner layer in the etching process.
    Type: Application
    Filed: November 6, 2018
    Publication date: May 7, 2020
    Inventors: Yi-Liang Ye, Chun-Wei Yu, Yu-Ren Wang, Shi-You Liu, Shao-Hua Hsu
  • Publication number: 20200135922
    Abstract: A semiconductor device and a method of forming the same, the semiconductor device includes a substrate, a gate structure and an epitaxial structure. The gate structure is disposed on the substrate, and the epitaxial structure is disposed in the substrate, at one side of the gate structure. The epitaxial structure includes a portion being protruded from a top surface of the substrate, and the portion includes a discontinuous sidewall, with a distance between a turning point of the discontinuous sidewalls and the gate structure being a greatest distance between the epitaxial structure and the gate structure.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 30, 2020
    Inventors: Kuang-Hsiu Chen, Sung-Yuan Tsai, Chi-Hsuan Tang, Chun-Wei Yu, Yu-Ren Wang
  • Patent number: 10622481
    Abstract: A method of rounding corners of a fin includes providing a substrate with a fin protruding from the substrate, wherein a pad oxide and a pad nitride entirely cover a top surface of the fin. Later, part of the pad oxide is removed laterally to expose part of the top surface of the fin. A silicon oxide layer is formed to contact two sidewalls of the fin and the exposed top surface, wherein two sidewalls and the top surface define two corners of the fin. After forming the silicon oxide layer, an annealing process is performed to round two corners of the fin. Finally, after the annealing process, an STI filling material is formed to cover the pad nitride, the pad oxide and the fin.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: April 14, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Liang Ye, Chun-Wei Yu, Yu-Ren Wang, Hao-Hsuan Chang, Chia-Wei Hsu
  • Publication number: 20200098916
    Abstract: A semiconductor device is disclosed. The semiconductor device comprises a substrate, a gate structure disposed on the substrate, a spacer disposed on the substrate and covering a sidewall of the gate structure, an air gap sandwiched between the spacer and the substrate, and a source/drain region disposed in the substrate and having a faceted surface exposed from the substrate, wherein the faceted surface borders the substrate on a boundary between the air gap and the substrate.
    Type: Application
    Filed: October 28, 2018
    Publication date: March 26, 2020
    Inventors: Kuang-Hsiu Chen, Sung-Yuan Tsai, Chi-Hsuan Tang, Kai-Hsiang Wang, Chao-Nan Chen, Shi-You Liu, Chun-Wei Yu, Yu-Ren Wang