Patents by Inventor Chung-Cheng Wu

Chung-Cheng Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11393926
    Abstract: A multi-gate semiconductor device having a fin element, a gate structure over the fin element, an epitaxial source/drain feature adjacent the fin element; a dielectric spacer interposing the gate structure and the epitaxial source/drain feature.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: July 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Huan-Sheng Wei, Hung-Li Chiang, Chia-Wen Liu, Yi-Ming Sheu, Zhiqiang Wu, Chung-Cheng Wu, Ying-Keung Leung
  • Patent number: 11276763
    Abstract: A semiconductor device and methods of forming the same are disclosed. The semiconductor device includes a substrate, first and second source/drain (S/D) regions, a channel between the first and second S/D regions, a gate engaging the channel, and a contact feature connecting to the first S/D region. The contact feature includes first and second contact layers. The first contact layer has a conformal cross-sectional profile and is in contact with the first S/D region on at least two sides thereof. In embodiments, the first contact layer is in direct contact with three or four sides of the first S/D region so as to increase the contact area. The first contact layer includes one of a semiconductor-metal alloy, an III-V semiconductor, and germanium.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: March 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Carlos H. Diaz, Chung-Cheng Wu, Chia-Hao Chang, Chih-Hao Wang, Jean-Pierre Colinge, Chun-Hsiung Lin, Wai-Yi Lien, Ying-Keung Leung
  • Patent number: 11239341
    Abstract: Various transistors, such as horizontal gate-all-around transistors, and methods of fabricating such are disclosed herein. An exemplary transistor includes a first nanowire and a second nanowire that include a first semiconductor material, a gate that wraps a channel region of the first nanowire and the second nanowire, and source/drain feature that wraps source/drain regions of the first nanowire and the second nanowire. The source/drain feature includes a second semiconductor material that is configured differently than the first semiconductor material. In some implementations, the transistor further includes a fin-like semiconductor layer disposed over a substrate. The first nanowire and the second nanowire are disposed over the fin-like semiconductor layer, such that the first nanowire, the second nanowire, and the fin-like semiconductor layer extend substantially parallel to one another along the same length-wise direction.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: February 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Hsiung Lin, Chung-Cheng Wu, Carlos H. Diaz, Chih-Hao Wang, Wen-Hsing Hsieh, Yi-Ming Sheu
  • Patent number: 11152338
    Abstract: A method includes forming a stacked structure of a plurality of first semiconductor layers and a plurality of second semiconductor layers alternately stacked in a first direction over a substrate, the first semiconductor layers being thicker than the second semiconductor layers. The method also includes patterning the stacked structure into a first fin structure and a second fin structure extending along a second direction substantially perpendicular to the first direction. The method further includes removing the first semiconductor layers of the first fin structure to form a plurality of nanowires. Each of the nanowires has a first height, there is a distance between two adjacent nanowires along the vertical direction, and the distance is greater than the first height. The method includes forming a first gate structure between the second semiconductor layers of the first fin structure.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: October 19, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zhi-Qiang Wu, Chun-Fu Cheng, Chung-Cheng Wu, Yi-Han Wang, Chia-Wen Liu
  • Patent number: 11145762
    Abstract: A multi-gate semiconductor device having a fin element, a gate structure over the fin element, an epitaxial source/drain feature adjacent the fin element; a dielectric spacer interposing the gate structure and the epitaxial source/drain feature.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: October 12, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Huan-Sheng Wei, Hung-Li Chiang, Chia-Wen Liu, Yi-Ming Sheu, Zhiqiang Wu, Chung-Cheng Wu, Ying-Keung Leung
  • Patent number: 11139341
    Abstract: In some embodiments, the present application provides a memory device. The memory device includes a chip that includes a magnetic random access memory (MRAM) cell. A magnetic-field-shielding structure comprised of conductive or magnetic material at least partially surrounds the chip. The magnetic-field-shielding structure comprises a sidewall region that laterally surrounds the chip, an upper region extending upward from the sidewall region, and a lower region extending downward from the sidewall region. At least one of the upper region and/or lower region terminate at an opening over the chip.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: October 5, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-An Liu, Chung-Cheng Wu, Harry-Hak-Lay Chuang, Gwan-Sin Chang, Tien-Wei Chiang, Zhiqiang Wu, Chia-Hsiang Chen
  • Publication number: 20210305409
    Abstract: A semiconductor device includes a substrate having a semiconductor fin. A gate structure is over the semiconductor fin, in which the gate structure has a tapered profile and comprises a gate dielectric. A work function metal layer is over the gate dielectric, and a filling metal is over the work function metal layer. A gate spacer is along a sidewall of the gate structure, in which the work function metal layer is in contact with the gate dielectric and a top portion of the gate spacer. An epitaxy structure is over the semiconductor fin.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 30, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Zhi-Qiang WU, Kuo-An LIU, Chan-Lon YANG, Bharath Kumar PULICHERLA, Li-Te LIN, Chung-Cheng WU, Gwan-Sin CHANG, Pinyen LIN
  • Publication number: 20210296485
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductor substrate having a first region and a second region; a first fin active region of a first semiconductor material disposed within the first region, oriented in a first direction, wherein the first fin active region has a <100> crystalline direction along the first direction; and a second fin active region of a second semiconductor material disposed within the second region and oriented in the first direction, wherein the second fin active region has a <110> crystalline direction along the first direction.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Inventors: Tzer-Min Shen, Zhiqiang Wu, Chung-Cheng Wu, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang, Min Cao
  • Patent number: 11075282
    Abstract: A method includes forming a gate layer over a semiconductor fin; forming a patterned mask over the gate layer; performing a first etching process to pattern the gate layer using the patterned mask as an etch mask, the patterned gate layer comprising a first gate extending across the semiconductor fin; depositing, by using an directional ion beam, a protection layer to wrap around a top surface, a first sidewall and a second sidewall of the first gate, the protection layer extending along the first and second sidewalls of the first gate towards a bottom surface of the first gate without extending to the bottom surface of the first gate on the second sidewall of the first gate; and after depositing the protection layer, performing a second etching process to a portion of the second sidewall of the first gate exposed by the protection layer.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: July 27, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-An Liu, Chan-Lon Yang, Bharath Kumar Pulicherla, Zhi-Qiang Wu, Chung-Cheng Wu, Chih-Han Lin, Gwan-Sin Chang
  • Patent number: 11043423
    Abstract: A semiconductor structure includes a plurality of first semiconductor layers interleaved with a plurality of second semiconductor layers. The first and second semiconductor layers have different material compositions. A dummy gate stack is formed over an uppermost first semiconductor layer. A first etching process is performed to remove portions of the second semiconductor layer that are not disposed below the dummy gate stack, thereby forming a plurality of voids. The first etching process has an etching selectivity between the first semiconductor layer and the second semiconductor layer. Thereafter, a second etching process is performed to enlarge the voids.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: June 22, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Li Chiang, Szu-Wei Huang, Huan-Sheng Wei, Jon-Hsu Ho, Chih Chieh Yeh, Wen-Hsing Hsieh, Chung-Cheng Wu, Yee-Chia Yeo
  • Patent number: 11031418
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductor substrate having a first region and a second region; a first fin active region of a first semiconductor material disposed within the first region, oriented in a first direction, wherein the first fin active region has a <100> crystalline direction along the first direction; and a second fin active region of a second semiconductor material disposed within the second region and oriented in the first direction, wherein the second fin active region has a <110> crystalline direction along the first direction.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tzer-Min Shen, Zhiqiang Wu, Chung-Cheng Wu, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang, Min Cao
  • Patent number: 11024721
    Abstract: A method includes forming a dummy gate over a substrate. A pair of gate spacers are formed on opposite sidewalls of the dummy gate. The dummy gate is removed to form a trench between the gate spacers. A first ion beam is directed to an upper portion of the trench, while leaving a lower portion of the trench substantially free from incidence of the first ion beam. The substrate is moved relative to the first ion beam during directing the first ion beam to the trench. A gate structure is formed in the trench.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: June 1, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Zhi-Qiang Wu, Kuo-An Liu, Chan-Lon Yang, Bharath Kumar Pulicherla, Li-Te Lin, Chung-Cheng Wu, Gwan-Sin Chang, Pinyen Lin
  • Patent number: 10871647
    Abstract: An EUV collector mirror for an extreme ultra violet (EUV) radiation source apparatus includes an EUV collector mirror body on which a reflective layer as a reflective surface is disposed, a trajectory correcting device attached to or embedded in the EUV collector mirror body and a trajectory correcting device to adjust the trajectory of metal from the reflective surface of the EUV collector mirror body to an opposite side of the EUV collector mirror body.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: December 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-An Liu, Gwan-Sin Chang, Bharath Kumar Pulicherla, Li-Jui Chen, Sheng-Kang Yu, Chung-Cheng Wu, Zhiqiang Wu
  • Publication number: 20200365712
    Abstract: Various transistors, such as horizontal gate-all-around transistors, and methods of fabricating such are disclosed herein. An exemplary transistor includes a first nanowire and a second nanowire that include a first semiconductor material, a gate that wraps a channel region of the first nanowire and the second nanowire, and source/drain feature that wraps source/drain regions of the first nanowire and the second nanowire. The source/drain feature includes a second semiconductor material that is configured differently than the first semiconductor material. In some implementations, the transistor further includes a fin-like semiconductor layer disposed over a substrate. The first nanowire and the second nanowire are disposed over the fin-like semiconductor layer, such that the first nanowire, the second nanowire, and the fin-like semiconductor layer extend substantially parallel to one another along the same length-wise direction.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Chun-Hsiung Lin, Chung-Cheng Wu, Carlos H. Diaz, Chih-Hao Wang, Wen-Hsing Hsieh, Yi-Ming Sheu
  • Patent number: 10790280
    Abstract: A semiconductor includes a first transistor and a second transistor. The first transistor includes a first and a second epitaxial layer, formed of a first semiconductor material. The second epitaxial layer is disposed over the first epitaxial layer. The first transistor also includes a first gate dielectric layer surrounds the first and second epitaxial layers and extends from a top surface of the first epitaxial layer to a bottom surface of the second epitaxial layer and a first metal gate layer surrounding the first gate dielectric layer. The second transistor includes a third epitaxial layer formed of the first semiconductor material and a fourth epitaxial layer disposed directly on the third epitaxial layer and formed of a second semiconductor. The second transistor also includes a second gate dielectric layer disposed over the third and fourth epitaxial layers and a second metal gate layer disposed over the second gate dielectric layer.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: September 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Cheng Ching, Chung-Cheng Wu, Ching-Fang Huang, Wen-Hsing Hsieh, Ying-Keung Leung, Cheng-Ting Chung
  • Publication number: 20200294973
    Abstract: A method includes forming a stacked structure of a plurality of first semiconductor layers and a plurality of second semiconductor layers alternately stacked in a first direction over a substrate, the first semiconductor layers being thicker than the second semiconductor layers. The method also includes patterning the stacked structure into a first fin structure and a second fin structure extending along a second direction substantially perpendicular to the first direction. The method further includes removing the first semiconductor layers of the first fin structure to form a plurality of nanowires. Each of the nanowires has a first height, there is a distance between two adjacent nanowires along the vertical direction, and the distance is greater than the first height. The method includes forming a first gate structure between the second semiconductor layers of the first fin structure.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 17, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Zhi-Qiang WU, Chun-Fu CHENG, Chung-Cheng WU, Yi-Han WANG, Chia-Wen LIU
  • Patent number: 10734500
    Abstract: Various transistors, such as horizontal gate-all-around transistors, and methods of fabricating such are disclosed herein. An exemplary transistor includes a first nanowire and a second nanowire that include a first semiconductor material, a gate that wraps a channel region of the first nanowire and the second nanowire, and source/drain feature that wraps source/drain regions of the first nanowire and the second nanowire. The source/drain feature includes a second semiconductor material that is configured differently than the first semiconductor material. In some implementations, the transistor further includes a fin-like semiconductor layer disposed over a substrate. The first nanowire and the second nanowire are disposed over the fin-like semiconductor layer, such that the first nanowire, the second nanowire, and the fin-like semiconductor layer extend substantially parallel to one another along the same length-wise direction.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: August 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Hsiung Lin, Chung-Cheng Wu, Carlos H. Diaz, Chih-Hao Wang, Wen-Hsing Hsieh, Yi-Ming Sheu
  • Patent number: 10672742
    Abstract: A device includes a substrate, a stacked structure and a first gate stack. The stacked structure includes a plurality of first semiconductor layers and a plurality of second semiconductor layers alternately stacked over the substrate. One of the first semiconductor layers has a height greater than a height of one the second semiconductor layers. The first gate stack wraps around the stacked structure.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: June 2, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Zhi-Qiang Wu, Chun-Fu Cheng, Chung-Cheng Wu, Yi-Han Wang, Chia-Wen Liu
  • Publication number: 20200152666
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductor substrate having a first region and a second region; a first fin active region of a first semiconductor material disposed within the first region, oriented in a first direction, wherein the first fin active region has a <100> crystalline direction along the first direction; and a second fin active region of a second semiconductor material disposed within the second region and oriented in the first direction, wherein the second fin active region has a <110> crystalline direction along the first direction.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: Tzer-Min Shen, Zhiqiang Wu, Chung-Cheng Wu, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang, Min Cao
  • Patent number: 10644168
    Abstract: Semiconductor structures including two-dimensional (2-D) materials and methods of manufacture thereof are described. By implementing 2-D materials in transistor gate architectures such as field-effect transistors (FETs), the semiconductor structures in accordance with this disclosure include vertical gate structures and incorporate 2-D materials such as graphene, transition metal dichalcogenides (TMDs), or phosphorene.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: May 5, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jean-Pierre Colinge, Chung-Cheng Wu, Carlos H. Diaz, Chih-Hao Wang, Ken-Ichi Goto, Ta-Pen Guo, Yee-Chia Yeo, Zhiqiang Wu, Yu-Ming Lin