Patents by Inventor Chung Hsu

Chung Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240387533
    Abstract: Semiconductor devices and methods of forming the same are provided. In an embodiment, a semiconductor device includes a first fin extending along a first direction, a second fin extending parallel to the first fin, and a gate structure over and wrapping around the first fin and the second fin, the gate structure extending along a second direction perpendicular to the first direction. The first fin bents away from the second fin along the second direction and the second fin bents away from the first fin along the second direction.
    Type: Application
    Filed: July 29, 2024
    Publication date: November 21, 2024
    Inventors: Jiun-Ming Kuo, Pei-Ling Gao, Chen-Hsuan Liao, Hung-Ju Chou, Chih-Chung Chang, Che-Yuan Hsu
  • Publication number: 20240385507
    Abstract: A photolithographic mask assembly according to the present disclosure accompanies a photolithographic mask. The photolithographic mask includes a capping layer over a substrate and an absorber layer disposed over the capping layer. The absorber layer includes a first main feature area, a second main feature area, and a venting feature area disposed between the first main feature area and the second main feature area. The venting feature area includes a plurality of venting features.
    Type: Application
    Filed: July 29, 2024
    Publication date: November 21, 2024
    Inventors: Chi-Ta Lu, Chih-Chiang Tu, Cheng-Ming Lin, Ching-Yueh Chen, Wei-Chung Hu, Ting-Chang Hsu, Yu-Tung Chen
  • Publication number: 20240378279
    Abstract: In an example implementation according to aspects of the present disclosure, a XR system comprises an HMD which includes an HMD display and a motion detection device, an external display of a computing device, and a processor operatively coupled with a computer readable storage medium and instructions stored on the computer readable storage medium that, when executed by the processor, direct the processor to detect an activation of a privacy mode; display, by the HMD display, a first series of images to a user of the HMD; display, by the external display, a second series of images to other users; capture, by the motion detection device, movements of the user selecting a sequence of images of the first series of images displayed on the HMD display; and authenticate the user based on the movements of the user.
    Type: Application
    Filed: September 23, 2021
    Publication date: November 14, 2024
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Kuan-Lin Li, Che-Wei Hsu, Yew-Chung Hung
  • Publication number: 20240379418
    Abstract: A disclosed method of fabricating a semiconductor structure includes forming a first conductive pattern over a substrate, with the first conductive pattern including a first conductive line and a second conductive line. A barrier layer may be conformally formed over the first conductive line and the second conductive line of the first conductive pattern. An insulating layer may be formed over the barrier layer. The insulating layer may be patterned to form openings between conductive lines of the first conductive pattern a second conductive pattern may be formed in the openings. The second conductive pattern may include a third conductive line is physically separated from the first conductive pattern by the barrier layer. The presence of the barrier layer reduces the risk of a short circuit forming between the first and second conductive patterns. In this sense, the second conductive pattern may be self-aligned relative to the first conductive pattern.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Feng-Cheng YANG, Chung-Te LIN
  • Publication number: 20240379820
    Abstract: In an embodiment, a method of forming a semiconductor device includes forming a dummy gate stack over a substrate; forming a first spacer layer over the dummy gate stack; oxidizing a surface of the first spacer layer to form a sacrificial liner; forming one or more second spacer layers over the sacrificial liner; forming a third spacer layer over the one or more second spacer layers; forming an inter-layer dielectric (ILD) layer over the third spacer layer; etching at least a portion of the one or more second spacer layers to form an air gap, the air gap being interposed between the third spacer layer and the first spacer layer; and forming a refill layer to fill an upper portion of the air gap.
    Type: Application
    Filed: July 24, 2024
    Publication date: November 14, 2024
    Inventors: Ming-Jhe Sie, Chen-Huang Huang, Shao-Hua Hsu, Cheng-Chung Chang, Szu-Ping Lee, An Chyi Wei, Shiang-Bau Wang, Chia-Jen Chen
  • Patent number: 12144112
    Abstract: A display panel and a manufacturing method thereof are provided. The display panel includes a substrate, an active element, a driving circuit element, a first connection circuit, a second connection circuit and a conductive connector. The substrate has a first surface and a second surface opposite to the first surface. The active element is disposed on the first surface. The driving circuit element is disposed on the second surface and is overlapped with the active element. The first connection circuit is disposed on the first surface and is connected to the active element. The second connection circuit is disposed on the second surface and is connected to the driving circuit element. The conductive connector penetrates through the substrate and two ends of the conductive connector are electrically connected to the first connection circuit and the second connection circuit, respectively.
    Type: Grant
    Filed: November 2, 2022
    Date of Patent: November 12, 2024
    Assignee: E Ink Holdings Inc.
    Inventors: Yi Jiun Wu, Wen-Chung Tang, Yung-Sheng Chang, Cheng-Hao Lee, Yu-Lin Hsu, Kuo-Hsing Cheng
  • Publication number: 20240372004
    Abstract: A disclosed semiconductor device includes a substrate, a gate electrode formed on the substrate, a gate dielectric layer formed over the gate electrode, a source electrode located adjacent to a first side of the gate electrode, and a drain electrode located adjacent to a second side of the gate electrode. A gate dielectric formed from an etch-stop layer and/or high-k dielectric layer separates the source electrode from the gate electrode and substrate and separates the drain electrode from the gate electrode and the substrate. First and second oxide layers are formed over the gate dielectric and are located adjacent to the source electrode on the first side of the gate electrode and located adjacent to the drain electrode on the second side of the gate electrode. A semiconductor layer is formed over the first oxide layer, the second oxide layer, the source electrode, the drain electrode, and the gate dielectric.
    Type: Application
    Filed: July 15, 2024
    Publication date: November 7, 2024
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Feng-Cheng YANG, Chung-Te LIN
  • Publication number: 20240373646
    Abstract: A planar insulating spacer layer can be formed over a substrate, and a combination of a semiconducting material layer, a thin film transistor (TFT) gate dielectric layer, and a gate electrode can be formed over the planar insulating spacer layer. A dielectric matrix layer is formed thereabove. A source-side via cavity and a drain-side via cavity can be formed through the dielectric matrix layer over end portions of the semiconducting material layer. Mechanical stress can be generated between the end portions of the semiconducting material layer by changing a lattice constant of end portions of the semiconducting material layer. The mechanical stress can enhance the mobility of charge carriers in a channel portion of the semiconducting material layer.
    Type: Application
    Filed: July 21, 2024
    Publication date: November 7, 2024
    Inventors: Hui-Hsien WEI, Yen-Chung HO, Chia-Jung YU, Yong-Jie WU, Pin-Cheng HSU
  • Publication number: 20240373615
    Abstract: A static random access memory (SRAM) cell includes a write port including a first inverter including a first pull-up transistor and a first pull-down transistor, and a second inverter including a second pull-up transistor and a second pull-down transistor and cross-coupled with the first inverter; and a read port including a read pass-gate transistor and a read pull-down transistor serially connected to each. A first doped concentration of impurities doped in channel regions of the second pull-down transistor and the read pull-down transistor is greater than a second doped concentration of the impurities doped in a channel region of the first pull-down transistor, or the impurities are doped in the channel regions of the second pull-down transistor and the read pull-down transistor and are not doped in the channel region of the first pull-down transistor.
    Type: Application
    Filed: July 15, 2024
    Publication date: November 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shau-Wei LU, Hao CHANG, Kun-Hsi LI, Kuo-Hung LO, Kang-Yu HSU, Yao-Chung HU
  • Publication number: 20240371869
    Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.
    Type: Application
    Filed: July 17, 2024
    Publication date: November 7, 2024
    Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
  • Publication number: 20240373650
    Abstract: A semiconductor device, an integrated circuit, and a method of manufacturing the same are provided. The semiconductor device includes a substrate, a thin-film transistor (TFT) over the substrate, and a magnetoresistive random-access memory (MRAM) cell electrically coupled to the TFT. The TFT includes a gate electrode; a gate dielectric layer disposed over the gate electrode; source/drain electrodes disposed above the gate electrode; and an active layer disposed above the gate electrode. A protection layer is disposed between the TFT and the MRAM cell and electrically connects the MRAM cell to the TFT.
    Type: Application
    Filed: July 18, 2024
    Publication date: November 7, 2024
    Inventors: HUI-HSIEN WEI, YEN-CHUNG HO, CHIA-JUNG YU, YONG-JIE WU, PIN-CHENG HSU
  • Patent number: 12136651
    Abstract: A semiconductor structure includes a SiGe fin protruding from a substrate, where the SiGe fin includes a top portion having a first sidewall and a second sidewall and a bottom portion having a third sidewall and a fourth sidewall, and where a first transition region connecting the first sidewall to the third sidewall and a second transition region connecting the second sidewall to the fourth sidewall each have a tapered profile extending away from the first sidewall and the second sidewall, respectively, and a Si-containing layer disposed on the top portion of the SiGe fin, where a portion of the Si-containing layer on the first transition region extends away from the first sidewall by a first lateral distance and a portion of the Si-containing layer on the second transition region extends away from the second sidewall by a second lateral distance that is different from the first lateral distance.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: November 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Shan Lu, Hung-Ju Chou, Pei-Ling Gao, Chen-Hsuan Liao, Chih-Chung Chang, Jiun-Ming Kuo, Che-Yuan Hsu
  • Publication number: 20240360720
    Abstract: A cord divider is positioned on both sides of the cord winder of the control box of a cordless window curtain. Each cord divider is equipped with protrusions and crosspieces. When the cords are pulled out from the cord divider, the cords do not tangle or knot. The cords are wound up on the driving gear set, and the driving cord device prevents the cords from overlapping and causing uneven heights on both sides of the curtain. The use of cylinders in the cord dividers prevents excessive friction of the cords during use. There is no need to change the current cooperation way between the cords and the cord winder.
    Type: Application
    Filed: July 12, 2023
    Publication date: October 31, 2024
    Inventors: WEN YING LIANG, Sheng Ying HSU, Chien Chih HUANG, Wu Chung NIEN, Ming Chu CHIANG, Wei Ming SHIH
  • Publication number: 20240363762
    Abstract: A semiconductor device includes a first dielectric layer, a gate electrode embedded within the first dielectric layer, a layer stack including a gate dielectric layer, a channel layer including a semiconducting metal oxide material, and a second dielectric layer, and a source electrode and a drain electrode embedded in the second dielectric layer and contacting a respective portion of a top surface of the channel layer. A combination of the gate electrode, the gate dielectric layer, the channel layer, the source electrode, and the drain electrode forms a transistor. The total length of the periphery of a bottom surface of the channel layer that overlies the gate electrode is equal to the width of the gate electrode or twice the width of the gate electrode, and resputtering of the gate electrode material on sidewalls of the channel layer is minimized.
    Type: Application
    Filed: July 11, 2024
    Publication date: October 31, 2024
    Inventors: Yong-Jie Wu, Hui-Hsien Wei, Yen-Chung Ho, Mauricio Manfrini, Chia-Jung Yu, Chung-Te Lin, Pin-Cheng Hsu
  • Patent number: 12129864
    Abstract: An impeller is provided, including a metal housing, a shaft, and a plastic member. The metal housing has a shaft mounting hole. The inner surface of the shaft mounting hole includes three or more contact points, and the contact points are closer to the shaft than other portions of the inner surface of the shaft mounting hole. The shaft passes through the shaft mounting hole and is affixed by the contact points. The metal housing divides the shaft into an upper section, a middle section, and a lower section. The plastic member passes through the shaft mounting hole and is in contact with the middle section.
    Type: Grant
    Filed: December 13, 2023
    Date of Patent: October 29, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Wei-I Ling, Chao-Fu Yang, Chih-Chung Chen, Kuo-Tung Hsu
  • Patent number: 12132050
    Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.
    Type: Grant
    Filed: December 1, 2023
    Date of Patent: October 29, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
  • Publication number: 20240353766
    Abstract: An extreme ultraviolet (EUV) lithography system includes a vane bucket module. The vane bucket module includes a temperature adjusting pack and a collecting tank inserted into the temperature adjusting pack. The temperature adjusting pack has a plurality of inlets. The collecting tank has a cover and the cover includes a plurality of through holes. The inlets of the temperature adjusting pack are aligned with the through holes of the cover. Each through hole has a minimum depth at a first position and a maximum depth at a second position. The first position is closer to a center of the cover than the second position.
    Type: Application
    Filed: July 2, 2024
    Publication date: October 24, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ssu-Yu Chen, Po-Chung Cheng, Li-Jui Chen, Che-Chang Hsu, Chi Yang
  • Publication number: 20240353502
    Abstract: This document describes systems and techniques directed at a machine-learning-based greedy optimization mechanism for reducing radio-frequency (RF) tests in production. In aspects, a process capability index is disclosed, the process capability index used to refine a test-set. The test-set includes tests configured to be performed on an electronic device. The process capability index is configured based on upper specification limits and lower specification limits of the electronic device for each test in the test-set, as well as results for each of the tests in the test-set. The process capability index is further configured based on a new upper specification limit and a new lower specification limit of the electronic device for a new test not in the test-set, as well as results for the new test.
    Type: Application
    Filed: June 28, 2024
    Publication date: October 24, 2024
    Applicant: Google LLC
    Inventors: Xianren Wu, Ying Luo, Daniel Minare Ho, Chung-Cheng Tseng, Wenxiao Wang, Daniel Khuong, Ren-Hua Chang, Chen-Chun Hsiao, Chien An Hsu, Hui Peng, Song Liu, Yujing Li
  • Publication number: 20240355728
    Abstract: A semiconductor structure includes a circuit with a redistribution layer (RDL) formed over the circuit. The redistribution layer comprises a plurality of metal layers. An inductor is formed in a topmost metal layer, and the circuit is located directly under the inductor. An under bump metallization (UBM) layer formed on the topmost metal layer and a conductive connector formed on the UBM layer.
    Type: Application
    Filed: August 17, 2023
    Publication date: October 24, 2024
    Inventors: Kai-Chun Chang, Hsieh-Hung Hsieh, Tzu-Jin Yeh, Ching-Chung Hsu, Chung-Long Chang, Hua-Chou Tseng
  • Patent number: 12125921
    Abstract: A semiconductor device includes a first dielectric layer, a gate electrode embedded within the first dielectric layer, a layer stack including a gate dielectric layer, a channel layer including a semiconducting metal oxide material, and a second dielectric layer, and a source electrode and a drain electrode embedded in the second dielectric layer and contacting a respective portion of a top surface of the channel layer. A combination of the gate electrode, the gate dielectric layer, the channel layer, the source electrode, and the drain electrode forms a transistor. The total length of the periphery of a bottom surface of the channel layer that overlies the gate electrode is equal to the width of the gate electrode or twice the width of the gate electrode, and resputtering of the gate electrode material on sidewalls of the channel layer is minimized.
    Type: Grant
    Filed: July 19, 2023
    Date of Patent: October 22, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yong-Jie Wu, Hui-Hsien Wei, Yen-Chung Ho, Mauricio Manfrini, Chia-Jung Yu, Chung-Te Lin, Pin-Cheng Hsu