Patents by Inventor Chung-Sung Chiang

Chung-Sung Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12243839
    Abstract: A bonded semiconductor structure includes a first device wafer and a second device wafer. The first device includes a first dielectric layer, a first bonding pad disposed in the first dielectric layer, and a first bonding layer on the first dielectric layer. The second device wafer includes a second dielectric layer, a second bonding layer on the second dielectric layer, and a second bonding pad disposed in the second dielectric layer and extending through the second bonding layer and at least a portion of the first bonding layer. A conductive bonding interface between the first bonding pad and the second bonding pad and a dielectric bonding interface between the first bonding layer and the second bonding layer include a step-height in a direction perpendicular to the dielectric bonding interface and the conductive bonding interface.
    Type: Grant
    Filed: February 2, 2024
    Date of Patent: March 4, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Sung Chiang, Chia-Wei Liu, Yu-Ruei Chen, Yu-Hsiang Lin
  • Publication number: 20240387418
    Abstract: A semiconductor device includes a bottom wafer, a top wafer bonded to the bottom wafer, a first dielectric layer, a second dielectric layer, a deep via conductor structure, and a connection pad. The top wafer includes a first interconnection structure. The first dielectric layer is disposed on the top wafer. The second dielectric layer is disposed on the first dielectric layer. The deep via conductor structure penetrates through the second dielectric layer and the first dielectric layer and is connected with the first interconnection structure. The connection pad is disposed on the second dielectric layer and the deep via conductor structure. A first portion of the second dielectric layer is sandwiched between the connection pad and the first dielectric layer. A second portion of the second dielectric layer is connected with the first portion, and a thickness of the second portion is less than a thickness of the first portion.
    Type: Application
    Filed: June 14, 2023
    Publication date: November 21, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Chun Chen, Yu-Ping Wang, I-Ming Tseng, Yi-An Shih, Chung-Sung Chiang, Chiu-Jung Chiu
  • Publication number: 20240371758
    Abstract: A method for fabricating a semiconductor device includes the steps of first bonding a top wafer to a bottom wafer, in which the top wafer has a first metal interconnection including a first barrier layer exposing from a bottom surface of the top wafer. Next, a dielectric layer is formed on the bottom surface of the top wafer and then a second metal interconnection is formed in the dielectric layer and connected to the first metal interconnection, in which the second metal interconnection includes a second barrier layer and the first barrier layer and the second barrier layer include a H-shape altogether.
    Type: Application
    Filed: May 31, 2023
    Publication date: November 7, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Chun Chen, Yu-Ping Wang, I-Ming Tseng, Yi-An Shih, Chung-Sung Chiang, Chiu-Jung Chiu
  • Publication number: 20240170423
    Abstract: A bonded semiconductor structure includes a first device wafer and a second device wafer. The first device includes a first dielectric layer, a first bonding pad disposed in the first dielectric layer, and a first bonding layer on the first dielectric layer. The second device wafer includes a second dielectric layer, a second bonding layer on the second dielectric layer, and a second bonding pad disposed in the second dielectric layer and extending through the second bonding layer and at least a portion of the first bonding layer. A conductive bonding interface between the first bonding pad and the second bonding pad and a dielectric bonding interface between the first bonding layer and the second bonding layer include a step-height in a direction perpendicular to the dielectric bonding interface and the conductive bonding interface.
    Type: Application
    Filed: February 2, 2024
    Publication date: May 23, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Sung Chiang, Chia-Wei Liu, Yu-Ruei Chen, Yu-Hsiang Lin
  • Patent number: 11935854
    Abstract: A method for forming a bonded semiconductor structure is disclosed. A first device wafer having a first bonding layer and a first bonding pad exposed from the first bonding layer and a second device wafer having a second bonding layer and a second bonding pad exposed from the second bonding layer are provided. Following, a portion of the first bonding pad is removed until a sidewall of the first bonding layer is exposed, and a portion of the second bonding layer is removed to expose a sidewall of the second bonding pad. The first device wafer and the second device wafer are then bonded to form a dielectric bonding interface between the first bonding layer and the second bonding layer and a conductive bonding interface between the first bonding pad and the second bonding pad. The conductive bonding interface and the dielectric bonding interface comprise a step-height.
    Type: Grant
    Filed: March 8, 2023
    Date of Patent: March 19, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Sung Chiang, Chia-Wei Liu, Yu-Ruei Chen, Yu-Hsiang Lin
  • Publication number: 20230223366
    Abstract: A method for forming a bonded semiconductor structure is disclosed. A first device wafer having a first bonding layer and a first bonding pad exposed from the first bonding layer and a second device wafer having a second bonding layer and a second bonding pad exposed from the second bonding layer are provided. Following, a portion of the first bonding pad is removed until a sidewall of the first bonding layer is exposed, and a portion of the second bonding layer is removed to expose a sidewall of the second bonding pad. The first device wafer and the second device wafer are then bonded to form a dielectric bonding interface between the first bonding layer and the second bonding layer and a conductive bonding interface between the first bonding pad and the second bonding pad. The conductive bonding interface and the dielectric bonding interface comprise a step-height.
    Type: Application
    Filed: March 8, 2023
    Publication date: July 13, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Sung Chiang, Chia-Wei Liu, Yu-Ruei Chen, Yu-Hsiang Lin
  • Patent number: 11640949
    Abstract: A bonded semiconductor structure includes a first device wafer and a second device wafer. The first device includes a first dielectric layer, a first bonding pad disposed in the first dielectric layer, and a first bonding layer on the first dielectric layer. The second device wafer includes a second dielectric layer, a second bonding layer on the second dielectric layer, and a second bonding pad disposed in the second dielectric layer and extending through the second bonding layer and at least a portion of the first bonding layer. A conductive bonding interface between the first bonding pad and the second bonding pad and a dielectric bonding interface between the first bonding layer and the second bonding layer include a step-height.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: May 2, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Sung Chiang, Chia-Wei Liu, Yu-Ruei Chen, Yu-Hsiang Lin
  • Publication number: 20230008792
    Abstract: A bonded semiconductor structure includes a first device wafer and a second device wafer. The first device includes a first dielectric layer, a first bonding pad disposed in the first dielectric layer, and a first bonding layer on the first dielectric layer. The second device wafer includes a second dielectric layer, a second bonding layer on the second dielectric layer, and a second bonding pad disposed in the second dielectric layer and extending through the second bonding layer and at least a portion of the first bonding layer. A conductive bonding interface between the first bonding pad and the second bonding pad and a dielectric bonding interface between the first bonding layer and the second bonding layer include a step-height.
    Type: Application
    Filed: August 19, 2021
    Publication date: January 12, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Sung Chiang, Chia-Wei Liu, Yu-Ruei Chen, Yu-Hsiang Lin
  • Publication number: 20150332996
    Abstract: The present invention provides an interposer including multiple circuit designs and an uppermost circuit design disposed on the circuit designs. A maximum exposure region is defined as a maximum size which can be defined by a single shot of a lithographic scanner. The sizes of the circuit designs below the uppermost circuit design are smaller than the size of the maximum exposure region. Therefore, the circuit designs are respectively formed by only a single shot of the lithographic scanner. The uppermost circuit design has a length greater than the length of the maximum exposure region, so that the circuit design is formed by stitching two photomasks lithographically.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 19, 2015
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Li Kuo, Kuei-Sheng Wu, Ming-Tse Lin, Chung-Sung Chiang
  • Patent number: 8916471
    Abstract: A method for forming a through silicon via for signal and a shielding structure is provided. A substrate is provided and a region is defined on the substrate. A radio frequency (RF) circuit is formed in the region on the substrate. A through silicon trench (TST) and a through silicon via (TSV) are formed simultaneously, wherein the TST encompasses the region to serve as a shielding structure for the RF circuit. A metal interconnection system is formed on the substrate, wherein the metal interconnection system comprises a connection unit that electrically connects the TSV to the RF circuit to provide a voltage signal.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: December 23, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Ching-Li Yang, Chien-Li Kuo, Chung-Sung Chiang, Yu-Han Tsai, Chun-Wei Kang