Patents by Inventor Chung-Wah Fon

Chung-Wah Fon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11624715
    Abstract: A NEMS readout system includes a sensor array comprising a plurality of sensors. Each sensor of the plurality of sensors including a resonator with frequency characteristics different from the resonator of each other sensor of the plurality of sensors. A readout signal indicative of a plurality of output signals is collected from the sensor array. Each output signal of the plurality of output signals corresponding to one of the plurality of sensors. An analysis of the plurality of output signals is performed to identify a plurality of resonant frequencies and to detect a frequency shift associated with at least one of the plurality of resonant frequencies.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: April 11, 2023
    Assignee: California Institute of Technology
    Inventors: Michael L. Roukes, Chung Wah Fon, Ewa Rej
  • Patent number: 11621671
    Abstract: A nanoelectromechanical systems (NEMS) oscillator network and methods for its operation are disclosed. The NEMS oscillator network includes one or more network inputs configured to receive one or more input signals. The NEMS oscillator network also includes a plurality of NEMS oscillators coupled to the one or more network inputs. Each of the plurality of NEMS oscillators includes a NEMS resonator and produces a radio frequency (RF) output signal that oscillates at a particular frequency and a particular phase. The NEMS oscillator network further includes a plurality of connections that interconnect the plurality of NEMS oscillators. The NEMS oscillator network further includes one or more network outputs coupled to the plurality of NEMS oscillators and configured to output one or more output signals.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: April 4, 2023
    Assignee: California Institute of Technology
    Inventors: Michael L. Roukes, Matthew H. Matheny, Chung Wah Fon
  • Publication number: 20220094303
    Abstract: A nanoelectromechanical systems (NEMS) oscillator network and methods for its operation are disclosed. The NEMS oscillator network includes one or more network inputs configured to receive one or more input signals. The NEMS oscillator network also includes a plurality of NEMS oscillators coupled to the one or more network inputs. Each of the plurality of NEMS oscillators includes a NEMS resonator and produces a radio frequency (RF) output signal that oscillates at a particular frequency and a particular phase. The NEMS oscillator network further includes a plurality of connections that interconnect the plurality of NEMS oscillators. The NEMS oscillator network further includes one or more network outputs coupled to the plurality of NEMS oscillators and configured to output one or more output signals.
    Type: Application
    Filed: December 6, 2021
    Publication date: March 24, 2022
    Applicant: California Institute of Technology
    Inventors: Michael L. Roukes, Matthew H. Matheny, Chung Wah Fon
  • Publication number: 20220050064
    Abstract: A NEMS readout system includes a sensor array comprising a plurality of sensors. Each sensor of the plurality of sensors including a resonator with frequency characteristics different from the resonator of each other sensor of the plurality of sensors. A readout signal indicative of a plurality of output signals is collected from the sensor array. Each output signal of the plurality of output signals corresponding to one of the plurality of sensors. An analysis of the plurality of output signals is performed to identify a plurality of resonant frequencies and to detect a frequency shift associated with at least one of the plurality of resonant frequencies.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Applicant: California Institute of Technology
    Inventors: Michael L. Roukes, Chung Wah Fon, Ewa Rej
  • Patent number: 11218115
    Abstract: A nanoelectromechanical systems (NEMS) oscillator network and methods for its operation are disclosed. The NEMS oscillator network includes one or more network inputs configured to receive one or more input signals. The NEMS oscillator network also includes a plurality of NEMS oscillators coupled to the one or more network inputs. Each of the plurality of NEMS oscillators includes a NEMS resonator and produces a radio frequency (RF) output signal that oscillates at a particular frequency and a particular phase. The NEMS oscillator network further includes a plurality of connections that interconnect the plurality of NEMS oscillators. The NEMS oscillator network further includes one or more network outputs coupled to the plurality of NEMS oscillators and configured to output one or more output signals.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: January 4, 2022
    Assignee: California Institute of Technology
    Inventors: Michael L. Roukes, Matthew H. Matheny, Chung Wah Fon
  • Patent number: 11187663
    Abstract: A NEMS readout system includes a sensor array comprising a plurality of sensors. Each sensor of the plurality of sensors including a resonator with frequency characteristics different from the resonator of each other sensor of the plurality of sensors. A readout signal indicative of a plurality of output signals is collected from the sensor array. Each output signal of the plurality of output signals corresponding to one of the plurality of sensors. An analysis of the plurality of output signals is performed to identify a plurality of resonant frequencies and to detect a frequency shift associated with at least one of the plurality of resonant frequencies.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: November 30, 2021
    Assignee: California Institute of Technology
    Inventors: Michael L. Roukes, Chung Wah Fon, Ewa Rej
  • Publication number: 20200350862
    Abstract: A nanoelectromechanical systems (NEMS) oscillator network and methods for its operation are disclosed. The NEMS oscillator network includes one or more network inputs configured to receive one or more input signals. The NEMS oscillator network also includes a plurality of NEMS oscillators coupled to the one or more network inputs. Each of the plurality of NEMS oscillators includes a NEMS resonator and produces a radio frequency (RF) output signal that oscillates at a particular frequency and a particular phase. The NEMS oscillator network further includes a plurality of connections that interconnect the plurality of NEMS oscillators. The NEMS oscillator network further includes one or more network outputs coupled to the plurality of NEMS oscillators and configured to output one or more output signals.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 5, 2020
    Inventors: Michael L. Roukes, Matthew H. Matheny, Chung Wah Fon
  • Publication number: 20200256809
    Abstract: A NEMS readout system includes a sensor array comprising a plurality of sensors. Each sensor of the plurality of sensors including a resonator with frequency characteristics different from the resonator of each other sensor of the plurality of sensors. A readout signal indicative of a plurality of output signals is collected from the sensor array. Each output signal of the plurality of output signals corresponding to one of the plurality of sensors. An analysis of the plurality of output signals is performed to identify a plurality of resonant frequencies and to detect a frequency shift associated with at least one of the plurality of resonant frequencies.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 13, 2020
    Inventors: Michael L. Roukes, Chung Wah Fon, Ewa Rej
  • Patent number: 10168292
    Abstract: An article comprising: an array of calorimeter devices, wherein the device comprises: at least one fluidic enclosure disposed on a microfluidic chip, wherein the fluidic enclosure is substantially gas impermeable; at least one first chamber and at least one second chamber, wherein the first chamber and the second chamber are disposed within and enclosed by the fluidic enclosure, wherein the first chamber and the second chamber are not vacuum encapsulated; at least two microfluidic channels connected to the first chamber and at least two microfluidic channels connected to the second chamber; and at least one thermal sensor disposed between the chip and the first and second chambers, wherein the thermal sensor is adapted to measure a temperature differential between the first and second chambers. Examples include DSC and TSA devices. Biological binding and melting experiments can be done with high sensitivity.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 1, 2019
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Chung Wah Fon, Michael L. Roukes
  • Patent number: 8827548
    Abstract: A microfluidic embedded nanoelectromechanical system (NEMs) force sensor provides an electrical readout. The force sensor contains a deformable member that is integrated with a strain sensor. The strain sensor converts a deformation of the deformable member into an electrical signal. A microfluidic channel encapsulates the force sensor, controls a fluidic environment around the force sensor, and improves the read out. In addition, a microfluidic embedded vacuum insulated biocalorimeter is provided. A calorimeter chamber contains a parylene membrane. Both sides of the chamber are under vacuum during measurement of a sample. A microfluidic cannel (built from parylene) is used to deliver a sample to the chamber. A thermopile, used as a thermometer is located between two layers of parylene.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: September 9, 2014
    Assignee: California Institute of Technology
    Inventors: Michael L. Roukes, Chung-Wah Fon, Wonhee Lee, Hongxing Tang, Blake Waters Axelrod, John Liang Tan
  • Publication number: 20130288386
    Abstract: An article comprising: an array of calorimeter devices, wherein the device comprises: at least one fluidic enclosure disposed on a microfluidic chip, wherein the fluidic enclosure is substantially gas impermeable; at least one first chamber and at least one second chamber, wherein the first chamber and the second chamber are disposed within and enclosed by the fluidic enclosure, wherein the first chamber and the second chamber are not vacuum encapsulated; at least two microfluidic channels connected to the first chamber and at least two microfluidic channels connected to the second chamber; and at least one thermal sensor disposed between the chip and the first and second chambers, wherein the thermal sensor is adapted to measure a temperature differential between the first and second chambers. Examples include DSC and TSA devices. Biological binding and melting experiments can be done with high sensitivity.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 31, 2013
    Inventors: Chung Wah FON, Michael L. ROUKES
  • Publication number: 20110216804
    Abstract: A microfluidic embedded nanoelectromechanical system (NEMs) force sensor provides an electrical readout. The force sensor contains a deformable member that is integrated with a strain sensor. The strain sensor converts a deformation of the deformable member into an electrical signal. A microfluidic channel encapsulates the force sensor, controls a fluidic environment around the force sensor, and improves the read out. In addition, a microfluidic embedded vacuum insulated biocalorimeter is provided. A calorimeter chamber contains a parylene membrane. Both sides of the chamber are under vacuum during measurement of a sample. A microfluidic cannel (built from parylene) is used to deliver a sample to the chamber. A thermopile, used as a thermometer is located between two layers of parylene.
    Type: Application
    Filed: May 18, 2011
    Publication date: September 8, 2011
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Michael L. Roukes, Chung-Wah Fon, Wonhee Lee, Hongxing Tang, Blake Waters Axelrod, John Liang Tan
  • Patent number: 7966898
    Abstract: A microfluidic embedded nanoelectromechanical system (NEMs) force sensor provides an electrical readout. The force sensor contains a deformable member that is integrated with a strain sensor. The strain sensor converts a deformation of the deformable member into an electrical signal. A microfluidic channel encapsulates the force sensor, controls a fluidic environment around the force sensor, and improves the read out. In addition, a microfluidic embedded vacuum insulated biocalorimeter is provided. A calorimeter chamber contains a parylene membrane. Both sides of the chamber are under vacuum during measurement of a sample. A microfluidic cannel (built from parylene) is used to deliver a sample to the chamber. A thermopile, used as a thermometer is located between two layers of parylene.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: June 28, 2011
    Assignee: California Institute of Technology
    Inventors: Michael L. Roukes, Chung-Wah Fon, Wonhee Lee, Hongxing Tang, Blake Waters Axelrod, John Liang Tan
  • Patent number: 7762719
    Abstract: Microcalorimeters having low addendum heat capacities and attojoule/Kscale resolutions are provided. These microcalorimeters make use of very small calorimeter bodies composed of materials with very low heat capacities. Also provided are polymer-based microcalorimeters with thermally isolated reagent chambers. These microcalorimeters use a multi-layered polymer membrane structure to provide improved thermal isolation of a reagent chamber.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: July 27, 2010
    Assignee: California Institute of Technology
    Inventors: Chung-Wah Fon, Michael L. Roukes, Wonhee Lee, Hongxing Tang
  • Publication number: 20100059808
    Abstract: A nonvolatile memory cell has charge trapping dielectric (160) which has been modified (i.e. oxidized) adjacent to edges of blocking dielectric (180). The modification reduces the charge-trapping density adjacent to the edges of the blocking dielectric, and hence reduces the leakage current at the edges. Other features are also provided.
    Type: Application
    Filed: September 10, 2008
    Publication date: March 11, 2010
    Inventors: Wei Zheng, Chung Wah Fon
  • Publication number: 20100024572
    Abstract: A microfluidic embedded nanoelectromechanical system (NEMs) force sensor provides an electrical readout. The force sensor contains a deformable member that is integrated with a strain sensor. The strain sensor converts a deformation of the deformable member into an electrical signal. A microfluidic channel encapsulates the force sensor, controls a fluidic environment around the force sensor, and improves the read out. In addition, a microfluidic embedded vacuum insulated biocalorimeter is provided. A calorimeter chamber contains a parylene membrane. Both sides of the chamber are under vacuum during measurement of a sample. A microfluidic cannel (built from parylene) is used to deliver a sample to the chamber. A thermopile, used as a thermometer is located between two layers of parylene.
    Type: Application
    Filed: July 30, 2007
    Publication date: February 4, 2010
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: MICHAEL L. ROUKES, CHUNG-WAH FON, WONHEE LEE, HONGXING TANG, BLAKE WATERS AXELROD, JOHN LIANG TAN
  • Publication number: 20070286254
    Abstract: Microcalorimeters having low addendum heat capacities and attojoule/Kscale resolutions are provided. These microcalorimeters make use of very small calorimeter bodies composed of materials with very low heat capacities. Also provided are polymer-based microcalorimeters with thermally isolated reagent chambers. These microcalorimeters use a multi-layered polymer membrane structure to provide improved thermal isolation of a reagent chamber.
    Type: Application
    Filed: April 20, 2005
    Publication date: December 13, 2007
    Inventors: Chung-Wah Fon, Michael Roukes, Wonhee Lee, Hongxing Tang