Patents by Inventor Chung Wai Leung

Chung Wai Leung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7910429
    Abstract: Conventional fabrication of sidewall oxide around an ONO-type memory cell stack usually produces Bird's Beak because prior to the fabrication, there is an exposed sidewall of the ONO-type memory cell stack that exposes side parts of a plurality of material layers respectively composed of different materials. Certain materials in the stack such as silicon nitrides are more difficult to oxidize than other materials in the stack such polysilicon. As a result oxidation does not proceed uniformly along the multi-layered height of the sidewall. The present disclosure shows how radical-based fabrication of sidewall dielectric can help to reduce the Bird's Beak formation. More specifically, it is indicated that short-lived oxidizing agents (e.g.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: March 22, 2011
    Assignee: ProMOS Technologies, Inc.
    Inventors: Zhong Dong, Chuck Jang, Ching-Hwa Chen, Chunchieh Huang, Jin-Ho Kim, Vei-Han Chan, Chung Wai Leung, Chia-Shun Hsiao, George Kovall, Steven Ming Yang
  • Patent number: 7897659
    Abstract: A water-based moldable modeling dough includes polyvinyl alcohol (PVA), vinyl acetate resin, water, maltose, maltitol, and hollow microspheres each with a diameter about 5-100 ?m.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: March 1, 2011
    Assignee: Huizhou Seasoar Art Supplies Co., Ltd.
    Inventor: Chung Wai Leung
  • Patent number: 7511333
    Abstract: A memory cell (110) has a plurality of floating gates (120L, 120R). The channel region (170) comprises a plurality of sub-regions (220L, 220R) adjacent to the respective floating gates, and a connection region (210) between the floating gates. The connection region has the same conductivity type as the source/drain regions (160) to increase the channel conductivity. Therefore, the floating gates can be brought closer together even though the inter-gate dielectric (144) becomes thick between the floating gates, weakening the control gate's (104) electrical field in the channel.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: March 31, 2009
    Assignee: ProMOS Technologies Inc.
    Inventors: Yue-Song He, Chung Wai Leung, Jin-Ho Kim, Kwok Kwok Ng
  • Patent number: 6962848
    Abstract: To fabricate a semiconductor memory, one or more pairs of first structures are formed over a semiconductor substrate. Each first structure comprises (a) a plurality of floating gates of memory cells and (b) a first conductive line providing control gates for the memory cells. The control gates overlie the floating gates. Each pair of the first structures corresponds to a plurality of doped regions each of which provides a source/drain region to a memory cell having the floating and control gates in one or the structure and a source/drain region to a memory cell having floating and control gates in the other one of the structures. For each pair, a second conductive line is formed whose bottom surface extends between the two structures and physically contacts the corresponding first doped regions. In some embodiments, the first doped regions are separated by insulation trenches. The second conductive line may form a conductive plug at least partially filling the region between the two first structures.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: November 8, 2005
    Assignee: ProMOS Technologies Inc.
    Inventors: Chung Wai Leung, Chia-Shun Hsiao, Vei-Han Chan
  • Patent number: 6821847
    Abstract: To fabricate a semiconductor memory, one or more pairs of first structures are formed over a semiconductor substrate. Each first structure comprises (a) a plurality of floating gates of memory cells and (b) a first conductive line providing control gates for the memory cells. The control gates overlie the floating gates. Each pair of the first structures corresponds to a plurality of doped regions each of which provides a source/drain region to a memory cell having the floating and control gates in one or the structure and a source/drain region to a memory cell having floating and control gates in the other one of the structures. For each pair, a second conductive line is formed whose bottom surface extends between the two structures and physically contacts the corresponding first doped regions. In some embodiments, the first doped regions are separated by insulation trenches. The second conductive line may form a conductive plug at least partially filling the region between the two first structures.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: November 23, 2004
    Assignee: Mosel Vitelic, Inc.
    Inventors: Chung Wai Leung, Chia-Shun Hsiao, Vei-Han Chan
  • Patent number: 6815760
    Abstract: To fabricate a semiconductor memory, one or more pairs of first structures are formed over a semiconductor substrate. Each first structure comprises (a) a plurality of floating gates of memory cells and (b) a first conductive line providing control gates for the memory cells. The control gates overlie the floating gates. Each pair of the first structures corresponds to a plurality of doped regions each of which provides a source/drain region to a memory cell having the floating and control gates in one or the structure and a source/drain region to a memory cell having floating and control gates in the other one of the structures. For each pair, a second conductive line is formed whose bottom surface extends between the two structures and physically contacts the corresponding first doped regions. In some embodiments, the first doped regions are separated by insulation trenches. The second conductive line may form a conductive plug at least partially filling the region between the two first structures.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: November 9, 2004
    Assignee: Mosel Vitelic, Inc.
    Inventors: Chung Wai Leung, Chia-Shun Hsiao, Vei-Han Chan
  • Patent number: 6815302
    Abstract: The present invention provides a method of manufacturing a bipolar transistor. The method may comprise forming a collector in a semiconductor wafer substrate, forming a base in the collector, implanting an oxide region within said collector and over the base, and forming an emitter over the substrate such that the oxide region is located between the emitter and the base.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: November 9, 2004
    Assignee: Agere Systems Inc.
    Inventors: Alan Sangone Chen, Yih-Feng Chyan, Chung Wai Leung, Yi Ma, William John Nagy
  • Publication number: 20040087088
    Abstract: To fabricate a semiconductor memory, one or more pairs of first structures are formed over a semiconductor substrate. Each first structure comprises (a) a plurality of floating gates of memory cells and (b) a first conductive line providing control gates for the memory cells. The control gates overlie the floating gates. Each pair of the first structures corresponds to a plurality of doped regions each of which provides a source/drain region to a memory cell having the floating and control gates in one or the structure and a source/drain region to a memory cell having floating and control gates in the other one of the structures. For each pair, a second conductive line is formed whose bottom surface extends between the two structures and physically contacts the corresponding first doped regions. In some embodiments, the first doped regions are separated by insulation trenches. The second conductive line may form a conductive plug at least partially filling the region between the two first structures.
    Type: Application
    Filed: October 20, 2003
    Publication date: May 6, 2004
    Inventors: Chung Wai Leung, Chia-Shun Hsiao, Vei-Han Chan
  • Patent number: 6700143
    Abstract: Circuit elements (e.g. transistor gates) formed over a semiconductor substrate are protected by adjacent dummy structures during mechanical or chemical mechanical polishing of an overlying dielectric.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: March 2, 2004
    Assignee: Mosel Vitelic, Inc.
    Inventors: Hsing Ti Tuan, Chung Wai Leung
  • Patent number: 6657281
    Abstract: The present invention provides a bipolar transistor located on a semiconductor wafer substrate. The bipolar transistor may comprise a collector located in the semiconductor wafer substrate, a base located in the collector, and an emitter located on the base and in contact with at least a portion of the base, wherein the emitter has a low K layer located therein. The low K layer may be, for example, located proximate a side of the emitter, or it may be located proximate opposing sides of the emitter. In all embodiments, however, the low K layer does not interfere with the proper functioning of the bipolar transistor, and substantially reduces the emitter-base capacitance typically associated with conventional bipolar transistors.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: December 2, 2003
    Assignee: Agere Systems Inc.
    Inventors: Yih-Feng Chyan, Chunchieh Huang, Chung Wai Leung, Yi Ma, Shahriar Moinian
  • Publication number: 20030119270
    Abstract: The present invention provides a method of manufacturing a bipolar transistor. The method may comprise forming a collector in a semiconductor wafer substrate, forming a base in the collector, implanting an oxide region withing said collector and over the base, and forming an emitter over the substrate such that the oxide region is located between the emitter and the base.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Applicant: Agere Systems Guardian Corporation
    Inventors: Alan Sangone Chen, Yih-Feng Chyan, Chung Wai Leung, Yi Ma, William John Nagy
  • Patent number: 6570215
    Abstract: In a nonvolatile memory, a floating gate includes a portion of a conductive layer (150), and also includes conductive spacers (610). The spacers increase the capacitive coupling between the floating gate and the control gate (170).
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: May 27, 2003
    Assignee: Mosel Vitelic, Inc.
    Inventors: Hsing T. Tuan, Vei-Han Chan, Chung Wai Leung, Chia-Shun Hsiao
  • Patent number: 6566196
    Abstract: In a nonvolatile memory, a floating gate (124) is covered with ONO (98), and a control gate polysilicon layer (124) is formed on the ONO. After the control gate is patterned, the control gate sidewalls are oxidized to form a protective layer (101) of silicon dioxide. This oxide protects the control gate polysilicon during a subsequent etch of the silicon nitride portion (98.2) of the ONO. Therefore, the silicon nitride can be removed with an isotropic etch. A potential damage to the substrate isolation dielectric (210) is therefore reduced. Other embodiments are also provided.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: May 20, 2003
    Assignee: Mosel Vitelic, Inc.
    Inventors: Barbara Haselden, Chia-Shun Hsiao, Chunchieh Huang, Jin-Ho Kim, Chung Wai Leung, Kuei-Chang Tsai
  • Patent number: 6562681
    Abstract: In a nonvolatile memory, a floating gate includes a portion of a conductive layer (150), and also includes conductive spacers (610). The spacers increase the capacitive coupling between the floating gate and the control gate (170).
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: May 13, 2003
    Assignee: Mosel Vitelic, Inc.
    Inventors: Hsing T. Tuan, Vei-Han Chan, Chung-Wai Leung, Chia-Shun Hsiao
  • Patent number: 6559055
    Abstract: Circuit elements (e.g. transistor gates) formed over a semiconductor substrate are protected by adjacent dummy structures during mechanical or chemical mechanical polishing of an overlying dielectric.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: May 6, 2003
    Assignee: Mosel Vitelic, Inc.
    Inventors: Hsing Ti Tuan, Chung Wai Leung
  • Patent number: 6555871
    Abstract: The present invention provides a bipolar transistor for use in increasing a speed of a flash memory cell having a source region and a drain region and first and second complementary tubs. In one embodiment, a base for the bipolar transistor is located in the first complementary tub. The first complementary tub functions as a collector for the bipolar transistor. The bipolar transistor base also uniquely functions as the source region. The bipolar transistor's emitter is also located in the first complementary tub and proximate the base. For example, the emitter may be located adjacent the base or actually located in the base. In an additional embodiment, the opposing bases and emitters are located on opposing sides of and proximate to the flash memory cell.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: April 29, 2003
    Assignee: Agere Systems Inc.
    Inventors: Yih-Feng Chyan, Chung Wai Leung, Ranbir Singh
  • Publication number: 20030067031
    Abstract: To fabricate a semiconductor memory, one or more pairs of first structures are formed over a semiconductor substrate. Each first structure comprises (a) a plurality of floating gates of memory cells and (b) a first conductive line providing control gates for the memory cells. The control gates overlie the floating gates. Each pair of the first structures corresponds to a plurality of doped regions each of which provides a source/drain region to a memory cell having the floating and control gates in one or the structure and a source/drain region to a memory cell having floating and control gates in the other one of the structures. For each pair, a second conductive line is formed whose bottom surface extends between the two structures and physically contacts the corresponding first doped regions. In some embodiments, the first doped regions are separated by insulation trenches. The second conductive line may form a conductive plug at least partially filling the region between the two first structures.
    Type: Application
    Filed: July 22, 2002
    Publication date: April 10, 2003
    Inventors: Chung Wai Leung, Chia-Shun Hsiao, Vei-Han Chan
  • Publication number: 20030068859
    Abstract: To fabricate a semiconductor memory, one or more pairs of first structures are formed over a semiconductor substrate. Each first structure comprises (a) a plurality of floating gates of memory cells and (b) a first conductive line providing control gates for the memory cells. The control gates overlie the floating gates. Each pair of the first structures corresponds to a plurality of doped regions each of which provides a source/drain region to a memory cell having the floating and control gates in one or the structure and a source/drain region to a memory cell having floating and control gates in the other one of the structures. For each pair, a second conductive line is formed whose bottom surface extends between the two structures and physically contacts the corresponding first doped regions. In some embodiments, the first doped regions are separated by insulation trenches. The second conductive line may form a conductive plug at least partially filling the region between the two first structures.
    Type: Application
    Filed: October 2, 2001
    Publication date: April 10, 2003
    Inventors: Chung Wai Leung, Chia-Shun Hsiao, Vei-Han Chan
  • Patent number: 6537887
    Abstract: An integrated circuit and a process for making the same are provided. The circuit has a nitrogen implanted emitter window, wherein the nitrogen has been implanted into the emitter window after the emitter window etch, but prior to the emitter conductor deposition. Nitrogen implantation is expected to minimize oxide growth variation.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: March 25, 2003
    Assignee: Agere Systems Inc.
    Inventors: Yih-Feng Chyan, Chung Wai Leung, Yi Ma, Demi Nguyen
  • Publication number: 20020190307
    Abstract: In a nonvolatile memory, a floating gate includes a portion of a conductive layer (150), and also includes conductive spacers (610). The spacers increase the capacitive coupling between the floating gate and the control gate (170).
    Type: Application
    Filed: July 18, 2002
    Publication date: December 19, 2002
    Inventors: Hsing T. Tuan, Vei-Han Chan, Chung Wai Leung, Chia-Shun Hsiao