Patents by Inventor Chung-Wei Lin

Chung-Wei Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153896
    Abstract: A first protective layer is formed on a first die and a second die, and openings are formed within the first protective layer. The first die and the second die are encapsulated such that the encapsulant is thicker than the first die and the second die, and vias are formed within the openings. A redistribution layer can also be formed to extend over the encapsulant, and the first die may be separated from the second die.
    Type: Application
    Filed: January 12, 2024
    Publication date: May 9, 2024
    Inventors: Hui-Min Huang, Chih-Wei Lin, Tsai-Tsung Tsai, Ming-Da Cheng, Chung-Shi Liu, Chen-Hua Yu
  • Patent number: 11978802
    Abstract: Provided are FinFET devices and methods of forming the same. A dummy gate having gate spacers on opposing sidewalls thereof is formed over a substrate. A dielectric layer is formed around the dummy gate. An upper portion of the dummy gate is removed and upper portions of the gate spacers are removed, so as to form a first opening in the dielectric layer. A lower portion of the dummy gate is removed to form a second opening below the first opening. A metal layer is formed in the first and second openings. The metal layer is partially removed to form a metal gate.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Wei Hsu, Chih-Hao Wang, Huan-Chieh Su, Wei-Hao Wu, Zhi-Chang Lin, Jia-Ni Yu
  • Publication number: 20240145632
    Abstract: A micro light emitting device includes an epitaxial structure, a conductive layer, and a first insulating layer. The epitaxial structure has a first surface and a second surface opposite to the first surface, and includes a first semiconductor layer, an active layer and a second semiconductor layer that are arranged in such order in a direction from the first surface to the second surface. The conductive layer is formed on a surface of the first semiconductor layer away from the active layer. The first insulating layer is formed on the surface of the first semiconductor layer away from the active layer, and exposes at least a part of the conductive layer.
    Type: Application
    Filed: October 23, 2023
    Publication date: May 2, 2024
    Inventors: Ming-Chun TSENG, Shaohua HUANG, Hongwei WANG, Kang-Wei PENG, Su-Hui LIN, Xiaomeng LI, Chi-Ming TSAI, Chung-Ying CHANG
  • Publication number: 20240145319
    Abstract: A semiconductor device package includes a supporting element, a transparent plate disposed on the supporting element, a semiconductor device disposed under the transparent plate, and a lid surrounding the transparent plate. The supporting element and the transparent plate define a channel.
    Type: Application
    Filed: January 2, 2024
    Publication date: May 2, 2024
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Tsung-Yu LIN, Pei-Yu WANG, Chung-Wei HSU
  • Publication number: 20240128120
    Abstract: A package structure and a manufacturing method thereof are disclosed. The structure includes at least one semiconductor die, a redistribution layer disposed on the at least one semiconductor die, and connectors there-between. The connectors are disposed between the at least one semiconductor die and the redistribution layer, and electrically connect the at least one semiconductor die and the redistribution layer. The redistribution layer includes a dielectric layer with an opening and a metallic pattern layer disposed on the dielectric layer, and the metallic pattern layer includes a metallic via located inside the opening with a dielectric spacer surrounding the metallic via and located between the metallic via and the opening.
    Type: Application
    Filed: March 30, 2023
    Publication date: April 18, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiang-Wei Liu, Chung-Kuang Lin
  • Patent number: 11951638
    Abstract: A method for determining a standard depth value of a marker includes obtaining a maximum depth value of the marker. A reference depth value of the marker is obtained based on a depth image of the marker, and a Z-axis coordinate value of the marker is obtained based on a color image of the marker. When the reference depth value and the Z-axis coordinate value are both less than the maximum depth value, and a difference between the reference depth value and the Z-axis coordinate value is not greater than 0, the depth reference value is set as the standard depth value of the marker; and when the difference is greater than 0, the Z-axis coordinate value is set as the standard depth value of the marker.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: April 9, 2024
    Assignee: Chiun Mai Communication Systems, Inc.
    Inventors: Tung-Chun Hsieh, Chung-Wei Wu, Chih-Wei Li, Chia-Yi Lin
  • Publication number: 20240113222
    Abstract: Some embodiments relate to a thin film transistor comprising an active layer over a substrate. An insulator is stacked with the active layer. A gate electrode structure is stacked with the insulator and includes a gate material layer having a first work function and a first interfacial layer. The first interfacial layer is directly between the insulator and the gate material layer, wherein the gate electrode structure has a second work function that is different from the first work function.
    Type: Application
    Filed: January 3, 2023
    Publication date: April 4, 2024
    Inventors: Yan-Yi Chen, Wu-Wei Tsai, Yu-Ming Hsiang, Hai-Ching Chen, Yu-Ming Lin, Chung-Te Lin
  • Publication number: 20240113225
    Abstract: A semiconductor device includes a gate, a semiconductor structure, a gate insulating layer, a first source/drain feature and a second source/drain feature. The gate insulating layer is located between the gate and the semiconductor structure. The semiconductor structure includes at least one first metal oxide layer, a first oxide layer, and at least one second metal oxide layer. The first oxide layer is located between the first metal oxide layer and the second metal oxide layer. The first source/drain feature and the second source/drain feature are electrically connected with the semiconductor structure.
    Type: Application
    Filed: January 10, 2023
    Publication date: April 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wu-Wei Tsai, Yan-Yi Chen, Hai-Ching Chen, Yu-Ming Lin, Chung-Te Lin
  • Publication number: 20240107414
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for switching a secondary cell to a primary cell. A user equipment (UE) monitors a first radio condition of the UE for beams of a primary cell and a second radio condition for beams of one or more secondary cells configured for the UE in carrier aggregation. The UE transmits a request to configure a candidate beam of at least one candidate secondary cell as a new primary cell in response to the first radio condition not satisfying a first threshold and the second radio condition for the at least one candidate secondary cell satisfying a second threshold. A base station determines to reconfigure at least one secondary cell as the new primary cell. The base station and the UE perform a handover of the UE to the new primary cell.
    Type: Application
    Filed: September 23, 2022
    Publication date: March 28, 2024
    Inventors: Yu-Chieh HUANG, Kuhn-Chang LIN, Jen-Chun CHANG, Wen-Hsin HSIA, Chia-Jou LU, Sheng-Chih WANG, Chenghsin LIN, Yeong Leong CHOO, Chun-Hsiang CHIU, Chihhung HSIEH, Kai-Chun CHENG, Chung Wei LIN
  • Publication number: 20240107777
    Abstract: An SOT MRAM structure includes a word line. A second source/drain doping region and a fourth source/drain doping region are disposed at the same side of the word line. A first conductive line contacts the second source/drain doping region. A second conductive line contacts the fourth source/drain doping region. The second conductive line includes a third metal pad. A memory element contacts an end of the first conductive line. A second SOT element covers and contacts a top surface of the memory element. The third metal pad covers and contacts part of the top surface of the second SOT element.
    Type: Application
    Filed: October 13, 2022
    Publication date: March 28, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Wei Kuo, Hung-Chan Lin, Chung-Yi Chiu
  • Patent number: 11935804
    Abstract: In an embodiment, a device includes: an integrated circuit die; an encapsulant at least partially surrounding the integrated circuit die, the encapsulant including fillers having an average diameter; a through via extending through the encapsulant, the through via having a lower portion of a constant width and an upper portion of a continuously decreasing width, a thickness of the upper portion being greater than the average diameter of the fillers; and a redistribution structure including: a dielectric layer on the through via, the encapsulant, and the integrated circuit die; and a metallization pattern having a via portion extending through the dielectric layer and a line portion extending along the dielectric layer, the metallization pattern being electrically coupled to the through via and the integrated circuit die.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Sung Huang, Ming Hung Tseng, Yen-Liang Lin, Hao-Yi Tsai, Chi-Ming Tsai, Chung-Shi Liu, Chih-Wei Lin, Ming-Che Ho
  • Patent number: 11935854
    Abstract: A method for forming a bonded semiconductor structure is disclosed. A first device wafer having a first bonding layer and a first bonding pad exposed from the first bonding layer and a second device wafer having a second bonding layer and a second bonding pad exposed from the second bonding layer are provided. Following, a portion of the first bonding pad is removed until a sidewall of the first bonding layer is exposed, and a portion of the second bonding layer is removed to expose a sidewall of the second bonding pad. The first device wafer and the second device wafer are then bonded to form a dielectric bonding interface between the first bonding layer and the second bonding layer and a conductive bonding interface between the first bonding pad and the second bonding pad. The conductive bonding interface and the dielectric bonding interface comprise a step-height.
    Type: Grant
    Filed: March 8, 2023
    Date of Patent: March 19, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Sung Chiang, Chia-Wei Liu, Yu-Ruei Chen, Yu-Hsiang Lin
  • Publication number: 20240088291
    Abstract: A transistor includes an insulating layer, a source region, a drain region, a channel layer, a ferroelectric layer, and a gate electrode. The source region and the drain region are respectively disposed on and in physical contact with two opposite sidewalls of the insulating layer. A thickness of the source region, a thickness of the drain region, and a thickness of the insulating layer are substantially the same. The channel layer is disposed on the insulating layer, the source region, and the drain region. The ferroelectric layer is disposed over the channel layer. The gate electrode is disposed on the ferroelectric layer.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chang Sun, Sheng-Chih Lai, Yu-Wei Jiang, Kuo-Chang Chiang, TsuChing Yang, Feng-Cheng Yang, Chung-Te Lin
  • Publication number: 20240076422
    Abstract: A supported metallocene catalyst includes a carrier and a metallocene component. The carrier includes an inorganic oxide particle and an alkyl aluminoxane material. The inorganic oxide particle includes at least one inorganic oxide compound selected from the group consisting of an oxide of Group 3A and an oxide of Group 4A. The alkyl aluminoxane material includes an alkyl aluminoxane compound and an alkyl aluminum compound that is present in amount ranging from greater than 0.01 wt % to less than 14 wt % base on 100 wt % of the alkyl aluminoxane material. The metallocene component is supported on the carrier, and includes one of a metallocene compound containing a metal from Group 3B, a metallocene compound containing a metal from Group 4B, and a combination thereof. A method for preparing the supported metallocene catalyst and a method for preparing polyolefin using the supported metallocene catalyst are also disclosed.
    Type: Application
    Filed: September 1, 2023
    Publication date: March 7, 2024
    Inventors: Jing-Cherng TSAI, Jen-Long WU, Wen-Hao KANG, Kuei-Pin LIN, Jing-Yu LEE, Jun-Ye HONG, Zih-Yu SHIH, Cheng-Hung CHIANG, Gang-Wei SHEN, Yu-Chuan SUNG, Chung-Hua WENG, Hsing-Ya CHEN
  • Publication number: 20240081078
    Abstract: A memory device includes a multi-layer stack, a channel layer, a memory material layer and at least three conductive pillars. The multi-layer stack is disposed on a substrate and includes a plurality of conductive layers and a plurality of dielectric layers stacked alternately. The channel layer and memory material layer penetrate through the plurality of conductive layers and the plurality of dielectric layers. The at least three conductive pillars are surrounded by the channel layer and the memory material layer, wherein the at least three conductive pillars are electrically connected to conductive layers respectively. The at least three conductive pillars includes a first, a second and a third conductive pillars disposed between the first conductive pillar and the second conductive pillar. A third width of the third conductive pillar is smaller than a first width of the first conductive pillar and a second width of the second conductive pillar.
    Type: Application
    Filed: January 10, 2023
    Publication date: March 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Wei Jiang, Pin-Cheng Hsu, Feng-Cheng Yang, Chung-Te Lin
  • Patent number: 11923396
    Abstract: An integrated circuit includes a photodetector. The photodetector includes one or more dielectric structures positioned in a trench in a semiconductor substrate. The photodetector includes a photosensitive material positioned in the trench and covering the one or more dielectric structures. A dielectric layer covers the photosensitive material. The photosensitive material has an index of refraction that is greater than the indices of refraction of the dielectric structures and the dielectric layer.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wei Hsu, Tsai-Hao Hung, Chung-Yu Lin, Ying-Hsun Chen
  • Publication number: 20240048965
    Abstract: Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a network node, a network assistant information (NAI) message identifying a set of characteristics of a network connection. The UE may communicate with the network node using a communication configuration associated with the set of characteristics of the network connection. Numerous other aspects are described.
    Type: Application
    Filed: August 4, 2022
    Publication date: February 8, 2024
    Inventors: Kai-Chun CHENG, Jen-Chun CHANG, Kuhn-Chang LIN, Wen-Hsin HSIA, Chia-Jou LU, Sheng-Chih WANG, Chenghsin LIN, Yu-Chieh HUANG, Chun-Hsiang CHIU, ChihHung HSIEH, Chung Wei LIN, Yeong Leong CHOO
  • Publication number: 20230342675
    Abstract: A production line operation forecast method and a production line operation forecast system are provided. The production line operation forecast method includes the following steps: obtaining an online production line work-in-process map at a time point, generating candidate simulated dispatch decisions based on the online production line work-in-process map, and inferring production-line work-in-process map changes of the candidate simulated dispatch decisions at a next time point; inputting the production-line work-in-process map changes to a forecast model, such that the forecast model outputs simulated production line operation health indicators of the candidate simulated dispatch decisions at the next time point; and selecting one of the candidate simulated dispatch decisions as a scheduling dispatch decision.
    Type: Application
    Filed: July 27, 2022
    Publication date: October 26, 2023
    Applicant: Industrial Technology Research Institute
    Inventors: Tsan-Cheng Su, Hao-Jhe Huang, Chung-Wei Lin
  • Patent number: 11791737
    Abstract: The invention discloses a control method in use of a synchronous rectifier controller, controlling a synchronous rectifier in a power supply supplying power a load. The synchronous rectifier is turned ON in response to a terminal signal of the synchronous rectifier. An ON-time of the synchronous rectifier is made not less than a minimum ON-time. A detection result in association with the load is provided, for determining the minimum ON-time. The minimum ON-time is a first period when the detection result indicates the load as a first load, and a second period, shorter than the first period, when the detection result indicates the load as a second load heavier than the first load.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: October 17, 2023
    Assignee: LEADTREND TECHNOLOGY CORPORATION
    Inventors: Tsung-Chien Wu, Chung-Wei Lin, Ming-Chang Tsou, Jun-Hao Huang
  • Patent number: D1017665
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: March 12, 2024
    Assignee: Ubiquiti Inc.
    Inventors: Robert J. Pera, Tsung Hwa Yang, Hong Wei Lin, Chung-Ming Lo, Yue-Lin Han